Page 1

UNITED STATES OF AMERICA

+ + + + +

DEFENSE NUCLEAR FACILITIES SAFETY BOARD

+ + + + +

PUBLIC MEETING AND HEARING

+ + + + +

THURSDAY OCTOBER 7, 2010

+ + + + +

The Board met in the Three Rivers Convention Center, 7016 W. Grandridge Boulevard, Kennewick, Washington, Peter S. Winokur, Chairman, presiding.

PRESENT:

PETER S. WINOKUR, Chairman JESSIE H. ROBERSON, Vice Chair JOSEPH F. BADER, Board Member

LARRY W. BROWN, Board Member JOHN E. MANSFIELD, Board Member STAFF PRESENT:

TIMOTHY DWYER, Technical Director RICHARD AZZARO, General Counsel

PANEL MEMBERS PRESENT:

GREG ASHLEY, BNI DAVID BROCKMAN, DOE-ORP DONNA BUSCHE, URS STACY CHARBONEAU, DOE-ORP

DAVID DICKEY, Consultant INES TRIAY, DOE-EM DALE KNUTSON, DOE-ORP

Page 2

PANEL MEMBERS PRESENT (Cont'd):

DAVID S. KOSSON, CRESP

LONI M. PEURRUNG, PNNL

FRANK RUSSO, BNI

PAUL RUTLAND, WRPS

LEO SAIN, URS

ALSO PRESENT:

ADAM POLOSKI

STEVEN STOKES

Page 3

C-O-N-T-E-N-T-S

Chairman Winokur and Board Members Board's Staff Testimony-Pulse Jet Mixing. . . 40 Department of Energy Panel Discussion: Pretreatment Facility Mixing. 61 Impact on safety Impact on operation Impact on waste acceptance Impact on criticality safety Panel Discussion: Feed Preparation and Public Statements Washington State Department of Ecology Carl Adrian President and CEO of TRIDEC Executive director Hanford Challenge

	Page 4
1	P-R-O-C-E-E-D-I-N-G-S
2	(9:00 a.m.)
3	CHAIRMAN WINOKUR: My name is
4	Peter Winokur. I am the chairman of the
5	Defense Nuclear Facilities Safety Board, and
6	I will preside over this public meeting and
7	hearing.
8	At this time, I would like to
9	introduce my colleagues on the Safety Board.
10	To my immediate left is Vice Chair Jessie
11	Roberson and to her left is Mr. Larry Brown.
12	To my immediate right is Dr. John Mansfield,
13	and to his right is Mr. Joseph Bader.
14	We five constitute the Board.
15	The Board's general counsel,
16	Richard Azzaro, is seated to my far left. The
17	Board's technical director, Timothy Dwyer, is
18	seated to my far right.
19	Several members of our staff, closely involved
20	with oversight, of the Department of Energy's
21	defense nuclear facilities at Hanford, are
22	also present.

		Pa
1	Today's meeting and hearing were	
2	first publicly noticed in the Federal Register	
3	on July 26, 2010, and renoticed for a change	
4	of location on September 15th, 2010. It is	
5	being held open to the public in accordance	
6	with the provisions of the Government and	
7	Sunshine Act.	
8	The hearing is being broadcast	
9	over the Internet via videostreaming. The	
10	link can be found on the Board's Web site.	
11	A video recording of the hearing will be made	
12	available on the Board's Web site as soon as	
13	possible after the hearing is concluded, and	
14	will remain available for 60 days. A verbatim	
15	written transcript, together with associated	
16	comments, will be available for viewing and	
17	copying in the Board's public reading room on	
18	the seventh floor of the Board's headquarters	
19	in Washington, D.C.	
20	In accordance with the Board's	
21	practice, as it is stated in the Federal	
22	Register notice, we welcome comments from	

Page 5

		Page 6
1	interested members of the public, at the	
2	conclusion of testimony for each of the three	
3	sessions comprising this public meeting and	
4	hearing.	
5	A list of those speakers who have	
6	contacted the Board is posted at the entrance	
7	to this auditorium. We have listed the people	
8	in the order in which they have contacted us,	
9	or, if possible, when they wish to speak.	
10	I will call the speakers in this	
11	order and ask that speakers state their name	
12	and title at the beginning of their	
13	presentation.	
14	There is also a table at the	
15	entrance to this room with a sign-up sheet for	
16	members of the public who wish to make a	
17	presentation but did not have an opportunity	
18	to sign up previous to this time. We will	
19	allow those who have already registered with	
20	usthey will follow those who have already	
21	registered with us in the order in which they	
22	have signed up.	

		Page 7
1	In order to give everyone wishing	
2	to speak an equal opportunity, we ask	
3	presenters to limit their original statements	
4	to five minutes.	
5	The Chair will then give consideration to	
6	additional comments, should time permit.	
7	Presentations should be limited to comments,	
8	technical information, or data concerning the	
9	subjects of this meeting and hearing. The	
10	Board members may question anyone making	
11	presentations to the extent deemed	
12	appropriate.	
13	The record of this proceeding will	
14	remain open until November 7th, 2010. The	
15	Board reserves its right to further schedule	
16	and regulate the course of this hearing, to	
17	recess, reconvene, postpone, or adjourn this	
18	meeting and hearing, and to otherwise exercise	
19	its authority under the Atomic Energy Act of	
20	1954, as amended.	
21	Now let me proceed to explain the Board's	
22	authority for inquiring into matters that are	

		Ρ
1	the subject of this public meeting and	
2	hearing.	
3	The Board's enabling statute, now	
4	in effect for more than 20 years, is found in	
5	the Atomic Energy Act, beginning in Section	
6	2286 of Title 42. One section of this defines	
7	the Board's role in the review of facility	
8	design and construction.	
9	And I quote. "The Board shall review the	
10	design of a new Department of Energy defense	
11	nuclear facility before construction of such	
12	facility begins, and shall recommend to the	
13	secretary, within a reasonable time, such	
14	modifications of the design as the Board	
15	considers necessary to ensure adequate	
16	protection of public health and safety.	
17	"During the construction of any such facility,	
18	the Board shall periodically review and	
19	monitor the construction, and shall submit to	
20	the secretary, within a reasonable time, such	
21	recommendations relating to the construction	
22	of that facility as the Board considers	

		Page 9
1	necessary to ensure adequate protection of	
2	public health and safety.	
3	"An action of the Board, or a	
4	failure to act under this paragraph, may not	
5	delay or prevent the Secretary of Energy from	
6	carrying out the construction of such a	
7	facility."	
8	The hearing begun this morning	
9	forms a part of the Board's continuing effort	
10	to fulfill the statutory charge with respect	
11	to the Waste Treatment and Immobilization	
12	Plant, also known as the Waste Treatment	
13	Plant.	
14	The record of the hearing, both	
15	oral and written, will be used by the Board to	
16	formulate recommendations to the Secretary of	
17	Energy for this critical project.	
18	These recommendations may take the	
19	form of a formal recommendation to the	
20	secretary, or may be transmitted to the	
21	department through letters or informal	
22	exchanges between technical counterparts.	

		Page	10
1	The Board's oversight		
2	responsibilities continue through completion		
3	of construction, testing, operation, and		
4	eventual decommissioning of these facilities.		
5	The Board's statutory charter is like that		
6	given to other agencies operating under the		
7	Atomic Energy Actthe protection of public		
8	health and safety, including safety of the		
9	workers.		
10	In the case of the Waste Treatment Plant,		
11	however, this statutory charge is made more		
12	complex because proper construction and		
13	operation of the plant is critical in		
14	resolving the underlying health and safety		
15	problem, namely, the large volume of toxic and		
16	radioactive waste now stored in underground		
17	tanks at Hanford.		
18	Many of these tanks are already 67		
19	years old, and most will be almost 100 years		
20	old by the end of the projected treatment		
21	mission.		
22	Consequently, it is not enough in		

Page 11 this case for the Board to focus solely on 1 2 whether construction of the Waste Treatment Plant will not suffer accidents harmful to 3 4 workers or the public. It must operate safely 5 and effectively, for many decades, to 6 remediate the safety hazard represented by 7 tank waste. 8 The Board has therefore inquired 9 into many issues that involve a mixture of accident risk and successful and efficient 10 11 long-term operations. 12 At this time, I'd like to provide 13 some additional background on the history of 14 this project. The Hanford high-level waste tanks 15 16 began receiving waste in the 1940's. As the 17 initial single-shell tanks were being 18 constructed, they were designed for about a 20 19 year life. Over the seven decades of 20 operation of the tank farms, poor chemical and 21 configuration control of the waste has created 22 a much more challenging problem for

		Ρ
1	understanding the chemistry and properties of	
2	the waste, as well as getting them mobilized,	
3	than exist at other sites such as the Savannah	
4	River site and the Idaho Cleanup Project.	
5	Characterization of this waste	
6	remains problematic. The first time that a	
7	single-shell tank was suspected of leaking was	
8	the mid 1950's. Many single-shell tanks have	
9	been proven leakers since then. The leakage	
10	exacerbates the need to get these wastes out	
11	of the tanks and in a suitable form for	
12	eventual disposal.	
13	The Department of Energy's	
14	solution to removing and stabilizing the	
15	waste, to reduce the current and future	
16	threats to health and safety, is the Waste	
17	Treatment Plant.	
18	The Waste Treatment Plant project	
19	was initiated in the mid 1990's. This is the	
20	first- of-a-kind project. The Board's formal	
21	oversight of the project began, in earnest,	
22	after a privatization effort was abandoned in	

Neal R. Gross & Co., Inc. 202-234-4433

Page 12

2002.

1

2	The Board has been advising the
3	department about our concerns related to
4	design basis safety requirements, and their
5	potential impact on operational safety
6	throughout the life of the project.
7	Since initiating the project, the
8	department has pursued internal and external
9	reviews of the project, obtaining advice from
10	experts in academia, the chemical and process
11	industries, and its national laboratories, to
12	help inform the design, the safe operation,
13	and performance of the plant over its
14	projected 40 year operational life.
15	It is important to note that the department
16	undertook a significant redesign effort
17	starting in 2009. Even though the design of
18	the plant was more than 70 percent complete,
19	the redesign of the plant is now over 80
20	percent complete, and construction of its pre-
21	treatment facility is more than 30 percent
22	complete.

		Page
1	Recently, the department indicated	
2	to the Board that it is transitioning the	
3	Waste Treatment Plant from a design and	
4	construction project to one of construction	
5	and commissioning.	
6	The department has referred to	
7	this transition as "pivoting." As such, the	
8	department is planning to wrap up its design	
9	actions by establishing the final design	
10	criteria for the plant's structure, systems	
11	and components. The pivot is intended to	
12	provide a defined path forward to finish the	
13	design of the systems and components that have	
14	not been finalized, and to resolve any	
15	outstanding technical issues.	
16	The Board is deeply concerned that	
17	the plant may be commissioned before several	
18	key technical issues are fully resolved. Once	
19	operational and exposed to radioactive waste,	
20	options for design changes in black and hot	
21	cells will be extremely limited, costly, and	
22	expose workers to hazardous situations.	

		Page
1	To the maximum extent possible,	
2	solutions must be accommodated before	
3	commissioning. A learn-as-we go philosophy	
4	does not seem prudent for this facility.	
5	Given that the project is now	
6	pivoting, wrapping up design, and focusing on	
7	commissioning, it is a crucial time to have	
8	DOE [Department of Energy] explain where they	
9	are, where they are going, what remains to be	
10	done, and in what time frame.	
11	Also implicit in the Board's	
12	statutory mandate is keeping the public	
13	appropriately informed of issues affecting	
14	public health and safety. Those are the goals	
15	of these proceedings.	
16	The proceedings began last month,	
17	when DOE pivotedprovidedexcuse meover	
18	200 pages of written answers to Board's	
19	questions. These questions and answers are	
20	available on the Board's Web site and will	
21	become a part of the record of these	
22	proceedings.	

		Page	16
1	I want to take a moment to thank		
2	the department for its timely response to		
3	these questions. Over the next two days, we		
4	intend to explore some of these answers to		
5	gain a more complete understanding.		
б	However, because of the large		
7	volume of information that must be discussed,		
8	a lack of further inquiry in this hearing, or		
9	in the future, should not necessarily be		
10	viewed as satisfaction on the part of the		
11	Board with either a previous written or verbal		
12	answer.		
13	The Board noted in its transmittal		
14	letter of questions to DOE in August 2010,		
15	that these questions should be viewed as a		
16	starting point for the discussions that will		
17	occur during this public meeting and hearing.		
18	There are several areas of the		
19	Waste Treatment Plant design in which the		
20	Board has concerns with the safety, and its		
21	ultimate operation for the decades the plant		
22	must operate.		

Page 17 These areas include the ability of 1 2 the plant to adequately mix the wastes after they are transferred from the tank farms into 3 4 the plant. The hydrogen control strategy for 5 dealing with the hydrogen gas that is 6 inevitably generated by the high-level wastes. 7 The implementation of safety controls 8 necessary to implement the hydrogen control 9 strategy, and the likelihood that limitations on the plant's operating envelope, resulting 10 11 from the performance of the plant's misting 12 systems, will result in more demands on the tank farms to deliver waste that meets 13 14 restrictive waste acceptance criteria, or the 15 need to provide alternative processing 16 capability. The first session of the Board's 17 18 hearings, this morning's session, is going to 19 concentrate on potential concerns with the 20 plant's ability to mix waste adequately during 21 plant operation. 22 We are trying to understand the

ability of the plant to safely, effectively, 1 2 and efficiently process 53 million gallons of Hanford tank waste containing 176 million 3 curies of radioactive materials, so it can be 4 5 vitrified for eventual disposal. 6 This involves the treatment of 7 waste containing high levels of solids. In 8 addition, the mixing systems in the plant's 9 waste receipt and processing vessels need to agitate the waste to prevent flammable amounts 10 11 of hydrogen gas from building up into solids, and to prevent solids that are rich in fissile 12 materials from accumulating in quantities that 13 14 could pose a criticality hazard. The mixing systems also need to be 15 16 operated in a manner that avoids upsets such 17 as pulse jet overblows. We have requested 18 that the department's experts in mixing from 19 industry, academia, and the National 20 Laboratories participate in this morning's 21 panel discussion. 22 We will endeavor to learn directly

> Neal R. Gross & Co., Inc. 202-234-4433

Page 18

		I
1	from the department's own experts about their	
2	current safety concerns related to mobilizing,	
3	treating, and stabilizing Hanford's unique	
4	high-level waste during plant operations, and	
5	about how the Waste Treatment Plant design	
б	effectively addresses those safety issues.	
7	Let me be clear. These are the	
8	department's experts that have been	
9	consultants to the project over the last	
10	several years. These are not the Board's	
11	experts. We have, however, evaluated their	
12	input to the department and monitored the	
13	department's response to them.	
14	We have also asked for	
15	participation from project design person from	
16	Bechtel National, Incorporated, URS	
17	Corporation, as well as the department's	
18	responsible personnel for managing the	
19	project.	
20	Since it appears that the	
21	department's solution to some concerns will	
22	require restrictions on the waste being	

Page 19

		Page	20
1	delivered to the plant, the Board will shift		
2	its discussions later this morning to panel		
3	members that include representatives from the		
4	tank farm contractor and associated federal		
5	personnel.		
6	This concludes my opening remarks.		
7	I will now ask my fellow Board		
8	members if they have opening remarks before we		
9	begin the testimony.		
10	Hearing no such request, I would		
11	like to invite the Assistant Secretary of		
12	Energy for Environmental Management, the		
13	Honorable Dr. Ines Triay, to read a statement		
14	from the deputy secretary of energy, the		
15	Honorable Daniel Poneman.		
16	She'll be followed by Mr. Dale		
17	Knutson, DOE's federal project director for		
18	the Waste Treatment Plant, and Ms. Stacy		
19	Charboneau, DOE's assistant manager of the		
20	tank farms project in the Office of River		
21	Project, who will also provide from brief		
22	remarks.		

		Page	21
1	Welcome, Dr. Triay.		
2	DR. TRIAY: Good morning, Chairman		
3	Winokur, and other members of the Board, the		
4	Board staff, and members of the public. We		
5	appreciate the opportunity to discuss with		
6	you our progress at the Waste Treatment Plant.		
7	I will be reading a statement this		
8	morning from Deputy Secretary Poneman on		
9	behalf of the Department of Energy.		
10	The Waste Treatment Plant project		
11	holds enormous importance for the nation, the		
12	region, and the Department of Energy. The		
13	department attaches the highest priority to		
14	the successful, safe completion of this		
15	project, on budget and on schedule.		
16	This hearing comes at an opportune		
17	time as we prepare to pivot from		
18	design/construct approach to a		
19	construct/commission approach to project		
20	management at Hanford.		
21	In preparing for this transition,		
22	we have sought input from several in-depth,		

independent technical and management reviews,
 and have worked diligently to resolve
 important issues.

4 The secretary and I are strongly 5 committed to continuous improvement in the 6 execution of our capital projects. As the 7 department's senior acquisition executive, I 8 take full responsibility for delivering our 9 projects, adhering to technical, cost and schedule baselines, and assuring the safety 10 11 and reliability of our operations. Safety is not just a top priority for the department but 12 13 an essential element of the design, 14 construction, and operations of each of our 15 capital projects. 16 As the largest, most complex 17 project in our portfolio, the Waste Treatment 18 Plant has fully engaged the time and energy of the senior leadership of the department. 19 Ιt

20 represents the cornerstone of the department's 21 efforts to address the hazards posed by over 22 53 million gallons of wastes remaining in

		Pag
1	aging tanks at Hanford.	
2	Many of these tanks have already	
3	served well beyond their original design	
4	lifetime.	
5	The secretary and I are also	
6	committed to assuring that the department is	
7	providing the resources necessary to complete	
8	the Waste Treatment Plant successfully. I	
9	want to identify some specific examples where	
10	we have engaged.	
11	We have taken several actions to	
12	provide the appropriate resources, including	
13	the following. Assigned two senior	
14	individuals in the department to lead	
15	construction project reviews of the Waste	
16	Treatment Plant; recruited an experienced	
17	project manager from the Office of Science,	
18	with a strong track record in successful	
19	delivering projects, to serve as the federal	
20	project director.	
21	Directed that the departmental	
22	resources from across the complex, the	

		Page
1	laboratories, production facilities, and site	
2	offices, be made available to assist with the	
3	Waste Treatment Plant and technical matters.	
4	We have had a number of	
5	discussions with the chairman and key	
6	executives of Bechtel, to seek their full	
7	commitment to providing resources and focus	
8	needed to successful complete this project.	
9	Bechtel responded by assigning to	
10	the Waste Treatment Plant a project director	
11	with an established successful record in	
12	nuclear, chemical, and DOE projects, and	
13	operating facilities.	
14	After the most recent peer review	
15	of the Waste Treatment Plant, the department	
16	chartered a technical review of the project,	
17	to determine whether technical issues	
18	identified in the previous review of the	
19	process technology were adequately resolved;	
20	to review the technical design against	
21	contract requirements; and to identify	
22	potential improvements to the Waste Treatment	

		Page	25
1	Plant, that could result in a net reduction in		
2	the Hanford tank waste mission life cycle		
3	costs or scheduled duration.		
4	That review has just been		
5	completed and a copy of the report has been		
6	recently provided to the Board.		
7	We have taken steps to bring a		
8	heightened level of focus, discipline, and		
9	support to the waste treatment federal project		
10	director, and to the tank farm federal project		
11	director, as we transition the Waste Treatment		
12	Plant project from its design/construct phase		
13	to the construct/commission phase.		
14	This means completing design and		
15	focusing on construction, and transition to		
16	operations, including the system for emptying		
17	the tanks and delivering the waste to the		
18	Waste Treatment Plant.		
19	The Waste Treatment Plant federal		
20	project director has the full support of the		
21	Assistant Secretary of Energy for		
22	Environmental Management and direct access to		

Page 2	26
--------	----

1 me as the deputy secretary.

We're working together, closely,
to identify not only project needs, but also
site office needs, to prepare successfully to
begin the Waste Treatment Plant operations by
2019.
An enormous task lies before us.
As illustrated by the issues to be considered

9 at this public meeting, there are numbers of 10 concerns that the department must address to 11 ensure the public and the Board, that we are 12 constructing, and will commission a facility 13 that can be safely operated.

I am committed to addressing the concerns identified by the Board, and welcome the opportunity afforded by this public hearing to do so.

Indeed, without the kind of transparency this hearing provides, our activities cannot gain the full confidence of the public, or fully explain our efforts to those present today, and to the surrounding

		Page 27
1	community. This process itself, and the	
2	feedback these hearings provide, will	
3	strengthen the department's efforts to do the	
4	nation's work, while keeping all eyes on	
5	continued improvement, excellence, and safety.	
6	It also supports our efforts to	
7	serve as good stewards of taxpayers'	
8	resources, and to fulfill our moral and legal	
9	obligations to remediate the environmental	
10	legacy of our past nuclear operations.	
11	Only through our collective	
12	efforts will this project successfully and	
13	safely complete its mission to remove the	
14	threat of Hanford's radioactive tank wastes,	
15	and to protect the public and nearby Columbia	
16	River for these and succeeding generations.	
17	I will now yield the floor to my	
18	colleague, the federal project director of the	
19	Waste Treatment Plant, Mr. Dale Knutson.	
20	MR. KNUTSON: Thank you, Dr. Triay.	
21	Good morning, Chairman Winokur, members of the	
22	Board, members of the public. Thank you for	

Page 28 inviting me to provide remarks today. I would 1 2 like to share my time with my colleague and the tank farms federal project director, Stacy 3 Charboneau, who will provide brief remarks 4 5 regarding the tank farms project and those aspects relevant to this week's hearing. 6 7 On June 1st, at the request of the 8 secretary of Energy, I assumed the role of 9 federal project director for the Waste Treatment and Immobilization Plant. 10 This plant is the cornerstone to 11 12 Hanford's tank waste cleanup mission, and 13 vital to removing the threat posed by 14 Hanford's 53 million gallons of radioactive 15 tank waste. 16 As the Federal Project Director, I 17 am responsible, and accountable to the 18 taxpayer, as well as the acquisition executive and program secretarial officer. It is my 19 20 job, and duty, to execute the project and 21 ensure it meets safety requirements, 22 technical, cost, and scheduled performance

		Page	29
1	baselines, and that when complete, it will		
2	operate safely and efficiently to successfully		
3	perform its mission.		
4	I've been the Waste Treatment		
5	Plant Federal Project Director for just over		
б	120 days. When I accepted this job, I made a		
7	commitment to the deputy secretary, that I		
8	would prepare an assessment of the project and		
9	deliver that assessment to him by September		
10	30th, 2010, which I have done.		
11	As part of developing that		
12	assessment, and as the FPD [Federal Project		
13	Director], I immersed myself in this project,		
14	working to assure myself that we are		
15	developing a safe, effective, and efficient		
16	plant, that our work is technically adequate		
17	and that we are ready to pivot our focus		
18	towards commissioning.		
19	Over the next two days, you will		
20	be reviewing the technical and programmatic		
21	detail that I've had the opportunity to assess		
22	over the past four months.		

		Page	30
1	Right now, I want to take a few		
2	minutes to give you the highlights of my		
3	assessment report, defining the "big picture"		
4	of where we are and where we are going on this		
5	project.		
6	First, we now have a strong		
7	structure in place to obtain the necessary		
8	team members of this project. That's		
9	important as we begin pivoting focus, and		
10	allows us to pull from a variety of resources,		
11	across the department, as well as industry.		
12	The Waste Treatment Plant project		
13	has a long history of internal and external		
14	reviews, and from those reviews, a substantial		
15	list of recommendations has emerged. I can		
16	say, with confidence, every recommendation		
17	made to date has been considered, most have		
18	been accepted, and all are being or have been		
19	appropriately dispositioned.		
20	As part of my review of external		
21	flowsheet review team recommendations, we		
22	included the assessment of residual risk.		

		Ρ
1	Remaining uncertainties and risks have been	
2	identified, and actions are being taken to	
3	provide additional confidence in system	
4	performance and gain operational knowledge	
5	prior to commissioning. The commitment for	
6	large-scale testing for pulse-jet mixers is an	
7	example of DOE's approach to managing residual	
8	risk.	
9	As part of the maturation of the	
10	project, the definitive design and safety	
11	design basis has evolved with the overarching	
12	philosophy and logic, that a heightened degree	
13	of conservatism is appropriate during	
14	conceptual phases, where detailsbefore	
15	details are available.	
16	As a natural progression of the	
17	project, the level of conservatism has been	
18	appropriately refined. As testing is	
19	completed, the design matured, issues	
20	resolved, and more information became	
21	available through, among other avenues,	
22	external reviews.	

I

Neal R. Gross & Co., Inc. 202-234-4433

Page 31

		Page
1	The last construction project	
2	review concluded that the Waste Treatment	
3	PlantI'm quotingthe Waste Treatment Plant	
4	can be delivered at the total project cost, if	
5	an accelerated funding profile is adopted, no	
6	new major technical issues emerge, and the	
7	project is proactively managed. End quote.	
8	That is the first time that such a	
9	conclusion has been made on this project from	
10	an external source. These external reviews	
11	provide us with valuable information,	
12	highlighting areas of strength and areas	
13	require, areas that require more attention,	
14	and we will continue conducting these reviews	
15	throughout the project. The next one is	
16	scheduled for November.	
17	At the request of the Secretary	
18	and Assistant Secretary for Environmental	
19	Management, a tank waste subcommittee was	
20	informed under the Environmental Management	
21	Advisory Board. Their first task was to	
22	assess closure of the WTP [Waste Treatment	

		Page 3
1	Plant] technical issues raised in 2005 by an	
2	external flowsheet review team.	
3	The subcommittee recently	
4	completed their assessment and determined that	
5	those technical issues were closed, and	
б	remaining technical risk is sufficiently low	
7	to allow a shift in focus towards	
8	commissioning.	
9	Safety remains a priority for the	
10	project at this construction site. Late in	
11	September, the Department's Office of Health,	
12	Safety and Security, notified ORP [Office of	
13	River Protection] and Bechtel, that it had	
14	certified the contractor in the department's	
15	Voluntary Project Program at the star level,	
16	the highest such level awarded.	
17	In closing, I want to stress that	
18	the safety of our workers, and the public, and	
19	protect of the environment, will always be our	
20	first priority. We are structured to access	
21	and utilize the appropriate team members to	
22	safely bring this plant into operations. We	

are working closely to ensure integration with 1 2 the tank farms to support operations. We remain focused and committed to addressing and 3 resolving all technical issues, and ensuring 4 5 this plant is built to safely carry out its 6 mission, removing the threat of Hanford's 7 liquid tank waste. 8 I welcome this opportunity to 9 update the Board, and the public, on the 10 progress being made toward completing design activities on the Waste Treatment Plant and 11 pivoting the project to a construction and 12 13 commissioning focus. 14 I'd like to now turn the floor 15 over to Stacy Charboneau. 16 CHAIRMAN WINOKUR: Thank you, Mr. 17 Knutson. 18 MS. CHARBONEAU: I too welcome the 19 opportunity to address the Board today, and 20 provide assurances that the tank farm project 21 is working hand in hand with the Waste 22 Treatment Plant project, aligning our efforts

> Neal R. Gross & Co., Inc. 202-234-4433

Page 34

		Page	35
1	to commission and operate the Waste Treatment		
2	Plant in order to complete the Hanford tank		
3	waste cleanup.		
4	A safe delivery of over 53 million		
5	gallons of waste, currently stored as sludge,		
б	salt cake, and liquids in 177 underground		
7	storage tanks, to the Waste Treatment Plant,		
8	will require extensive infrastructure,		
9	including modifications to existing		
10	facilities, and construction of new		
11	facilities, to complete the tank waste		
12	treatment mission.		
13	The requirements for additional		
14	facility modifications, or new facilities at		
15	tank farms, necessary to achieve waste feed		
16	delivery requirements, will be determined		
17	after the convergence of two major efforts		
18	currently underway.		
19	The first is the tank farms		
20	pumping and mixing studies, and the second is		
21	the Waste Treatment Plant waste acceptance		
22	criteria, data quality objectives process.		

		Page
1	The ability to adequately mix and sample waste	
2	to meet the WTP acceptance requirements is	
3	being evaluated, and will need to be	
4	demonstrated. As detailed in the tank farm's	
5	project technology developing road map, while	
6	this testing is currently underway, the extent	
7	of testing will be determined based on waste	
8	acceptance criteria requirements, as refined	
9	through the data quality objective process and	
10	closure of the WTP technical issues.	
11	It is an integrated process, and	
12	both WTP and tank farms personnel are	
13	participating.	
14	The tank farms project has worked	
15	closely with the Waste Treatment Plant project	
16	to address and close technical issues	
17	regarding wastefeed to the WTP.	
18	Currently, no added acceptance	
19	criteria on wastefeed delivery are expected	
20	due to mixing concerns. Further, waste	
21	particle size and density criteria are	
22	satisfied by adhering to the existing	

Neal R. Gross & Co., Inc. 202-234-4433

Page 36

		Page	37
1	interface control document, ICD-19 [Interface		
2	Control Document 19], waste acceptance		
3	criteria on maximum critical velocity.		
4	The sampling of each feed batch		
5	will ensure that the feed delivered to WTP		
6	meets the acceptance criteria and remains		
7	below the material at-risk assumptions in the		
8	safety basis.		
9	Any changes to the WTP criticality		
10	safety evaluation report that impact feed		
11	delivery will be coordinated with the tank		
12	farms project to ensure the changes are		
13	attainable.		
14	DOE and its contractors have		
15	systems in place to ensure control of safety-		
16	related design activities required to		
17	implement solutions, and facilitate		
18	development of appropriate safety-related		
19	structures, systems, and components.		
20	And to mirror Mr. Knutson's		
21	statement, as the tank farms federal project		
22	director, it is my job and duty to execute the		

1	project and ensure it meets safety
2	requirements, technical, cost and scheduled
3	performance baselines, and that when complete,
4	these structures, systems and components will
5	operate safely and efficiently to successful
6	complete the mission.
7	I'm energized to move the River
8	Protection Project to forward to the next
9	phase. As we plan for commissioning these
10	complex nuclear facilities, I look forward to
11	our discussions during the waste feed
12	preparation panel later today.
13	CHAIRMAN WINOKUR: Thank you, Ms.
14	Charboneau. I'd like to thank the three of
15	you. This session will continue now with
16	testimony offered by members of the Board's
17	staff. I ask each staff member who offers
18	testimony to begin by stating his name and
19	position for the record.
20	MR. KASDORF: Good morning, Mr.
21	Chairman, and members of the Board. For the
22	record, my name is Roy Kasdorf. With me are

1	Mr. Steven Stokes and Dr. Adam Poloski, the	Page
2	staff leads for WTP and mixing. I am the	
3	Board's lead for the nuclear facilities Design	
4	and Infrastructure Group.	
5	I am responsible for ensuring that	
б	reviews of the Board's staff of design and	
7	construction projects are completed consistent	
8	with the Board's mission.	
9	Over the past eight years, the	
10	Board's staff has been reviewing the Waste	
11	Treatment and Immobilization Plant pre-	
12	treatment facility, design and safety basis	
13	development. The staff recognizes that	
14	operation of the WTP is vital to the	
15	remediation of the Hanford site. The WTP is	
16	the primary means for reducing the risk	
17	resulting from the storage of high-level waste	
18	in Hanford's tanks.	
19	As such, the Board staff	
20	recognizes that WTP must operate efficiently	
21	and safely over the entire duration of its	
22	multidecade mission. The staff's concerns	

		Page 4	10
1	fundamentally relate to safety issues, but		
2	many of the safety issues would also result in		
3	significant operational problems, such as		
4	buildup of material in vessels, plugging or		
5	bursting of pipes. Such operational problems		
б	would delay processing of the Hanford tank		
7	waste.		
8	The Board believes that such delay		
9	is a safety concern. This testimony will		
10	address the safety-related concerns of the		
11	staff associated with pulse jet mixing issues		
12	at the WTP. But first, I would like to		
13	discuss why the Department of Energy elected		
14	to use pulse jet mixers, PJMs [Pulse Jet		
15	Mixers], as their primary means of mixing in		
16	the WTP, and briefly describe how PJMs work.		
17	The design philosophy for the pre-		
18	treatment facility involves the use of black		
19	cells. A black cell is a room in the pre-		
20	treatment facility that will not be accessible		
21	during the designed 40-year operating life of		
22	the facility. Black cells contain the vessels		

		Page 41
1	and piping that will be used to prepare the	
2	waste for processing and subsequent	
3	vitrification.	
4	Since black cells are	
5	inaccessible, all components located in the	
6	black cells must be maintenance-free. That's	
7	the reason for the selection of PJMs. They	
8	have no moving parts and are maintenance-free.	
9	To operate, PJMs use air to draw	
10	waste up into a pulse tube, charging the pulse	
11	tube, and then high-pressure air to expel the	
12	waste into the vessel, discharging the pulse	
13	tube.	
14	The repeated charging and	
15	discharging of the pulse tubes provides the	
16	mixing energy for each vessel. Proper mixing	
17	is necessary to avoid hazards from solids	
18	accumulating in the WTP waste tanks.	
19	From a safety perspective, PJMs	
20	perform properly when the solids are	
21	successfully lifted from the bottom of the	
22	vessel and suspended in the waste, or at a	

Г

minimum, when solids move freely on the bottom 1 2 of the vessel. Solid suspension is the 3 industry standard. However, the project 4 recently changed their criteria to use bottom 5 clearing, where solids are shown to move 6 freely on the bottom of the vessels but are 7 not fully suspended. 8 In the opinion of Pacific 9 Northwest Laboratory researchers, this change 10 represents a significant reduction in mixing criteria. Fast-settling particles provide the 11 greatest challenge for the PJMs. The fast-12 13 settling solids, which are generally the 14 large, heavy particles, must be lifted off the 15 bottom long enough to allow them to be pumped out of the vessel when the waste is being 16 transferred. 17 The staff believes that this is 18 19 the first use of PJM mixing technology 20 involving radioactive slurries with a high 21 concentration of solids with heavy radioactive 22 particles. So it is not surprising that

> Neal R. Gross & Co., Inc. 202-234-4433

Page 42

		Pa
1	Bechtel National, Incorporated, BNI [Bechtel	
2	National Incorporated], has experienced	
3	considerable difficulty developing PJM designs	
4	that meet their design objectives and	
5	requirements. BNI needed to change the PJM	
6	design, as recently as this year, to increase	
7	the mixing energy for problem vessels.	
8	Mixing energy can be addedcan be	
9	increased by adding more pulse tubes,	
10	increasing the size of the pulse tubes, or by	
11	increasing nozzle velocity of which the liquid	
12	is discharged from the pulse tube.	
13	But there are limitations to the	
14	nozzle velocities and the size and number of	
15	pulse tubes that a given vessel can	
16	accommodate.	
17	One other solution is to limit the	
18	amount of solids and particle sizes allowed	
19	into the vessel by tightening up on the waste	
20	acceptance criteria, the WAC [Waste Acceptance	
21	Criteria].	
22	This could solve the WTP problems	

but may have negative implications for the 1 2 length of time that the plant may be required 3 to operate, as well as put more burdens on the tank farm contractor. 4 5 As I stated, if the solids are not mixed properly, safety issues can result from 6 7 the accumulation of solids in the pre-8 treatment vessels. There are three main 9 safety issues. Inadvertent criticality due to accumulation of fissile solids, trapping 10 excessive amounts of flammable gases in the 11 solids later, and PJM overblows, which occur 12 when the air pressurizing the pulse tubes is 13 14 left on too long and compressed air blows out forcefully into the tank waste contents. 15 16 Overblows are potentially damaging to the process vessel, and BNI has limited 17 18 them to one thousand occurrences during the operating life of the plant. 19 20 Without adequate mixing, safe 21 operation of the pre-treatment facility cannot 22 be assured and the mission of the facility

> Neal R. Gross & Co., Inc. 202-234-4433

Page 44

would be impacted. 1 2 As I mentioned earlier, the design 3 of the PJM system has been very challenging 4 for BNI. The challenges are due to 5 uncertainties associated with waste characterization, the high concentration of 6 7 solids in the slurries being mixed, and the 8 ability to predict proper scaling factors to 9 correlate PJM testing to actual in-plant 10 performance. As such, the Board staff is not 11 12 confident that the ability--that the 13 capability to adequately mix solids in the WTP 14 has been demonstrated. I'll now discus, 15 briefly, some of these uncertainties. 16 Effective PJM mixing requires that characteristics of the waste supplied to the 17 18 pre-treatment facility be well-known. The viscosity of the waste slurry, the particle 19 20 size, and the density distribution of the 21 solids are important parameters, if one wishes 22 to understand mixing capability.

		Page
1	However, the waste	
2	characterization data used to establish the	
3	WTP design basis uses slurry properties from	
4	a 2002 report, that relied on limited data	
5	from only a few of the 177 waste tanks.	
6	The limitations of these data have	
7	been recognized since that report was	
8	prepared. The report noted the need for	
9	additional characterization data and stated	
10	these slurry calculations must be regarded as	
11	"rough guides" because of the apparently wide	
12	variation of the data, and the relatively	
13	small number of tanks for which measurements	
14	have been made.	
15	PNNL [Pacific Northwest National	
16	Laboratory] established characterization data	
17	that considered 28 of the 177 tanks, in an	
18	effort to establish a revised particle size	
19	for use in testing and design. However, this	
20	PNNL report does not, in the staff's opinion,	
21	properly bound the particle size and density	
22	distribution from tank farm place due to a	

46

1 variety of problems. For example, the 2 instrumentation used to measure particle size 3 had no limitations that affected its accuracy, 4 and the method used to estimate particle 5 density at a particular size is based on 6 assumptions on chemical composition, rather 7 than measured densities. 8 Uncertainties in particle size, 9 and densities, density, present significant 10 challenges for defining simulants to use in 11 the testing program, that ultimately define 12 the design inputs and requirements for mixing 13 in the pre-treatment facility. 14 Using limited tank data can be 15 problematic. In 2009, PNNL compiled viscosity 16 data for 28 waste tanks and found that the 17 earlier 2002 correlations, which was developed 18 from only three waste tanks, significantly 19 underpredicted the viscosity as compared to 20 the measured PNNL values. 21 Establishing the real logical			Page	47
3had no limitations that affected its accuracy,4and the method used to estimate particle5density at a particular size is based on6assumptions on chemical composition, rather7than measured densities.8Uncertainties in particle size,9and densities, density, present significant10challenges for defining simulants to use in11the testing program, that ultimately define12the design inputs and requirements for mixing13in the pre-treatment facility.14Using limited tank data can be15problematic. In 2009, PNNL compiled viscosity16data for 28 waste tanks and found that the17earlier 2002 correlations, which was developed18from only three waste tanks, significantly19underpredicted the viscosity as compared to20the measured PNNL values.21Establishing the real logical	1	variety of problems. For example, the		
4and the method used to estimate particle5density at a particular size is based on6assumptions on chemical composition, rather7than measured densities.8Uncertainties in particle size,9and densities, density, present significant10challenges for defining simulants to use in11the testing program, that ultimately define12the design inputs and requirements for mixing13in the pre-treatment facility.14Using limited tank data can be15problematic. In 2009, PNNL compiled viscosity16data for 28 waste tanks and found that the17earlier 2002 correlations, which was developed18from only three waste tanks, significantly19underpredicted the viscosity as compared to20the measured PNNL values.21Establishing the real logical	2	instrumentation used to measure particle size		
5density at a particular size is based on6assumptions on chemical composition, rather7than measured densities.8Uncertainties in particle size,9and densities, density, present significant10challenges for defining simulants to use in11the testing program, that ultimately define12the design inputs and requirements for mixing13in the pre-treatment facility.14Using limited tank data can be15problematic. In 2009, PNNL compiled viscosity16data for 28 waste tanks and found that the17earlier 2002 correlations, which was developed18from only three waste tanks, significantly19underpredicted the viscosity as compared to20the measured PNNL values.21Establishing the real logical	3	had no limitations that affected its accuracy,		
6assumptions on chemical composition, rather7than measured densities.8Uncertainties in particle size,9and densities, density, present significant10challenges for defining simulants to use in11the testing program, that ultimately define12the design inputs and requirements for mixing13in the pre-treatment facility.14Using limited tank data can be15problematic. In 2009, PNNL compiled viscosity16data for 28 waste tanks and found that the17earlier 2002 correlations, which was developed18from only three waste tanks, significantly19underpredicted the viscosity as compared to20the measured PNNL values.21Establishing the real logical	4	and the method used to estimate particle		
 than measured densities. Uncertainties in particle size, and densities, density, present significant challenges for defining simulants to use in the testing program, that ultimately define the design inputs and requirements for mixing in the pre-treatment facility. Using limited tank data can be problematic. In 2009, PNNL compiled viscosity data for 28 waste tanks and found that the earlier 2002 correlations, which was developed from only three waste tanks, significantly underpredicted the viscosity as compared to the measured PNNL values. Establishing the real logical 	5	density at a particular size is based on		
8Uncertainties in particle size,9and densities, density, present significant10challenges for defining simulants to use in11the testing program, that ultimately define12the design inputs and requirements for mixing13in the pre-treatment facility.14Using limited tank data can be15problematic. In 2009, PNNL compiled viscosity16data for 28 waste tanks and found that the17earlier 2002 correlations, which was developed18from only three waste tanks, significantly19underpredicted the viscosity as compared to20the measured PNNL values.21Establishing the real logical	6	assumptions on chemical composition, rather		
 and densities, density, present significant challenges for defining simulants to use in the testing program, that ultimately define the design inputs and requirements for mixing in the pre-treatment facility. Using limited tank data can be problematic. In 2009, PNNL compiled viscosity data for 28 waste tanks and found that the earlier 2002 correlations, which was developed from only three waste tanks, significantly underpredicted the viscosity as compared to the measured PNNL values. Establishing the real logical 	7	than measured densities.		
 challenges for defining simulants to use in the testing program, that ultimately define the design inputs and requirements for mixing in the pre-treatment facility. Using limited tank data can be problematic. In 2009, PNNL compiled viscosity data for 28 waste tanks and found that the earlier 2002 correlations, which was developed from only three waste tanks, significantly underpredicted the viscosity as compared to the measured PNNL values. Establishing the real logical 	8	Uncertainties in particle size,		
11 the testing program, that ultimately define 12 the design inputs and requirements for mixing 13 in the pre-treatment facility. 14 Using limited tank data can be 15 problematic. In 2009, PNNL compiled viscosity 16 data for 28 waste tanks and found that the 17 earlier 2002 correlations, which was developed 18 from only three waste tanks, significantly 19 underpredicted the viscosity as compared to 20 the measured PNNL values. 21 Establishing the real logical	9	and densities, density, present significant		
12 the design inputs and requirements for mixing 13 in the pre-treatment facility. 14 Using limited tank data can be 15 problematic. In 2009, PNNL compiled viscosity 16 data for 28 waste tanks and found that the 17 earlier 2002 correlations, which was developed 18 from only three waste tanks, significantly 19 underpredicted the viscosity as compared to 20 the measured PNNL values. 21 Establishing the real logical	10	challenges for defining simulants to use in		
 in the pre-treatment facility. Using limited tank data can be problematic. In 2009, PNNL compiled viscosity data for 28 waste tanks and found that the earlier 2002 correlations, which was developed from only three waste tanks, significantly underpredicted the viscosity as compared to the measured PNNL values. Establishing the real logical 	11	the testing program, that ultimately define		
14Using limited tank data can be15problematic. In 2009, PNNL compiled viscosity16data for 28 waste tanks and found that the17earlier 2002 correlations, which was developed18from only three waste tanks, significantly19underpredicted the viscosity as compared to20the measured PNNL values.21Establishing the real logical	12	the design inputs and requirements for mixing		
 problematic. In 2009, PNNL compiled viscosity data for 28 waste tanks and found that the earlier 2002 correlations, which was developed from only three waste tanks, significantly underpredicted the viscosity as compared to the measured PNNL values. Establishing the real logical 	13	in the pre-treatment facility.		
16data for 28 waste tanks and found that the17earlier 2002 correlations, which was developed18from only three waste tanks, significantly19underpredicted the viscosity as compared to20the measured PNNL values.21Establishing the real logical	14	Using limited tank data can be		
<pre>17 earlier 2002 correlations, which was developed 18 from only three waste tanks, significantly 19 underpredicted the viscosity as compared to 20 the measured PNNL values. 21 Establishing the real logical</pre>	15	problematic. In 2009, PNNL compiled viscosity		
18 from only three waste tanks, significantly 19 underpredicted the viscosity as compared to 20 the measured PNNL values. 21 Establishing the real logical	16	data for 28 waste tanks and found that the		
<pre>19 underpredicted the viscosity as compared to 20 the measured PNNL values. 21 Establishing the real logical</pre>	17	earlier 2002 correlations, which was developed		
20 the measured PNNL values. 21 Establishing the real logical	18	from only three waste tanks, significantly		
21 Establishing the real logical	19	underpredicted the viscosity as compared to		
	20	the measured PNNL values.		
22 properties of the wester presents significant	21	Establishing the real logical		
22 propercies of the waste presents significant	22	properties of the waste presents significant		

challenges to the adequate mixing of the waste 1 2 in the process vessels. The second area of 3 uncertainty is associated with using PJMs to mix solutions with high concentrations of 4 5 solids. As early as June of 2000, prior to 6 the establishment of WTP's design basis slurry 7 properties, British Nuclear Fuels, Limited, 8 the original design agent, completed the 9 conceptual design of the PJM for WTP. In August 2001, BNFL [British 10 Nuclear Fuels Limited] established the 11 12 technical basis for the adequacy of the PJM 13 concept for the WTP application. This report 14 concluded that testing was required to develop the PJM technology for the vessels that 15 16 contained a high degree of solids. 17 BNI has attempted to further 18 develop the PJM technology from 2002 until 19 today. Some important milestones from this 20 period are: In March 2006, the External 21 Flowsheet Review Team released a report that 22 identified mixing issues with PJMs.

> Neal R. Gross & Co., Inc. 202-234-4433

Page 48

Page 49 In their report, the EFRT 1 2 [External Flowsheet Review Team] warned that 3 an accumulation of large participles in the 4 bottom of tanks may further reduce the 5 efficiency of PJMs. Accumulation may also 6 cause plugging of the measurement bubblers, 7 removal of those particles will require 8 specific tank cleanup operations that are not 9 planned in the design. The project ultimately referred to this as Major Issue 3, M-3. 10 In May 2009, PNNL issued a report 11 on resuspension testing of low solids, low 12 solids vessels, which concluded that twelve of 13 14 the 22 low-solids vessels were prepared to 15 have inadequate mixing performance. In May 2009, BNI began additional 16 17 testing but used a different experimental approach which relied on a combination of 18 19 full-scale testing at the Washington State 20 University, and small-scale testing at Mid 21 Columbia Engineering. The full-scale portion 22 of the testing attempted to measure the area

		Page	50
1	of sediment cleared around a PJM, while the		
2	small-scale testing used a prototype,		
3	prototypic small-scale vessel.		
4	By the end of 2009, testing		
5	results from the new small-scale testing		
б	showed the velocity needed to achieve off-		
7	bottom suspension was significantly greater		
8	than the velocity that had been predicted by		
9	PNNL. This was an important finding, since it		
10	showed that even more mixing energy would be		
11	necessary to complete off-bottom suspension.		
12	In December of 2009, the		
13	Consortium for Risk Evaluation with		
14	Stakeholder Participation, the CRESP		
15	[Consortium for Risk Evaluation with		
16	Stakeholder Participation] team, which is a		
17	consortium of experts from academia, that		
18	provides DOE an independent assessment of		
19	mixing, reviewed BNI's testing program and had		
20	seven recommendations.		
21	One of the CRESP recommendations		
22	stated that the design basis for each vessel		

i		
		Page
1	should be established on clearly defined	
2	mixing requirements with the scaling basis for	
3	each requirement founded on physical	
4	mechanisms.	
5	From January to June of 2010, BNI	
6	attempted to implement the 2009 CRESP	
7	recommendations in their small-scale testing	
8	program. The testing had already shown that	
9	some of the vessels would have problems	
10	mixing.	
11	This led BNI to revise the	
12	requirements for mixing of these vessels to	
13	specify a lower solids concentrationthis	
14	will lead to tightening of the waste	
15	acceptance criteriaand to use less	
16	conservative scaling factor for correlating	
17	PJM nozzle velocity from the full-scale	
18	vessels.	
19	Further, BNI revised the approach	
20	for testing the problem vessels to one of	
21	simply demonstrating that solids could be	
22	transported out of the vessels, so that solids	

		Page !
1	would not accumulate, and that sediment on the	
2	bottom of the vessels could be mobilized to	
3	release flammable gas.	
4	This revised approach and design	
5	criteria deviates from the standard industrial	
6	design approach for mixing off-bottom	
7	suspension or cloud height. As a result, the	
8	WTP mixing system will not be as robust.	
9	Lastly, the scaling factors used	
10	by BNI to demonstrate that the full-scale	
11	vessels would mix properly, have been	
12	questioned by the Board, and others. BNI used	
13	the scaling factors to establish the small-	
14	scale testing parameters that correlate to	
15	actual design parameters.	
16	A typical approach would be to	
17	predict full-scale performance from small-	
18	scale testing by conducting identical	
19	experiments with several test platforms of	
20	different scale, and then extrapolating to	
21	predict how the full-scale system will behave	
22	using scaling factors.	

		Page
1	BNI's approach relies on a single,	
2	small-scale testing platform, and an assumed	
3	scaling factor that includes an exponent of	
4	0.18, that is based on a single journal	
5	article that is not directly pertinent to the	
6	WTP/PJMs.	
7	This scaling factor assumed by BNI	
8	has been questioned by several of DOE's	
9	independent experts. In their response to the	
10	Board's Question 18, PNNL researchers write,	
11	and I quote, "The smaller scale of factor	
12	exponent allowed the scaled PJMs to be	
13	operated at a higher velocity in the test	
14	stand, thus improving the observed clearing	
15	behavior. We think the use of 0.18 scaling	
16	exponent, which derived from a sheer wall	
17	measurement of steady air jets impinging on	
18	the flat plate, to unsteady mobilization of	
19	solids in the test stands, is not supported by	
20	existing data." End quote.	
21	There are more recent compelling	
22	scaling factor exponents in the literature but	

		Page	54
1	BNI chose to use a nonconservative		
2	experimental basis.		
3	In July 2010, CRESP issued its		
4	letter report number seven, following their		
5	review of the recent BNI small-scale testing.		
6	This letter contained 13		
7	recommendations, and concluded, and I quote:		
8	"There are several important PJM		
9	vessel design uncertainties and definition of		
10	operating requirements that remain to be		
11	resolved, including revision of the		
12	criticality controls, validation of scale-up		
13	relations for PJM zone of influence,		
14	integrated validation of vessel performance,		
15	recovery from a design basis event, and viable		
16	sampling strategies, that result in PJM		
17	performance and programmatic risk.		
18	"The greatest risk is that the		
19	actual zone of influence during WTP operations		
20	is smaller than predicted by the current		
21	design basis, and therefore, solids		
22	accumulation may require more frequent clean-		

Γ

		Page
1	out than predicted.	
2	"Experimental programs that	
3	validate scaling relationships for the zone of	
4	influence, and the integrated vessel	
5	performance at full scale, or near scale, are	
6	needed. While none of these uncertainties	
7	fundamentally indicate that WPT will not	
8	function, provided their is enough flexibility	
9	in PJM operation, resolution of these issues	
10	may result in pre-treatment process operating	
11	at lower waste throughput than currently	
12	projected." End quote.	
13	The Board's staff agrees with the	
14	CRESP conclusions and strongly supports the	
15	need for large-scale testing to reduce the	
16	uncertainty in the existing PJM design.	
17	However, based on testing	
18	performed to date, full-scale testing may	
19	simply demonstrate that the PJMs are only	
20	capable of mixing lower concentrations of	
21	solids than originally planned. This could	
22	impact throughput, extending waste, tank waste	

		Page
1	treatment, or requiring supplemental tank	
2	farms treatment capability.	
3	As we've heard, DOE is pivoting	
4	the WTP project from design and construction	
5	into construction and commissioning. To	
6	address potential weaknesses in the PJM	
7	design, DOE recently committed to conduct	
8	large-scale testing within the next several	
9	years.	
10	BNI has also proposed adding heel	
11	dilution and heel removal capability to the	
12	pre-treatment vessels, to mitigate any	
13	potential accumulation of solids. From the	
14	perspective of the Board staff, BNI is moving	
15	construction forward, with significant	
16	technical risk and uncertainty.	
17	While DOE is committed to perform	
18	large-scale testing, before the testing is	
19	completed all vessel designs will have been	
20	determined to have been confirmation-ready,	
21	and the vessels will have been installed.	
22	Without further comprehensive	

		Page	57
1	waste characterization, the uncertainties		
2	associated with the range of particle sizes,		
3	densities, and fluid viscosities remain.		
4	Large-scale testing may only demonstrate that		
5	the vessels will not mix solids sufficiently		
6	to prevent accumulation and indicate		
7	limitations on solids loading, that may impact		
8	the project's schedule.		
9	The functional design requirements		
10	for heel dilution and heel removal capability		
11	have not been established. Criticality safety		
12	issues remain to be resolved. The vessel		
13	sampling design remains incomplete, and the		
14	ability to meet design requirements also		
15	remain in question.		
16	The Board staff believes that DOE		
17	should establish a credible strategy for		
18	dealing with this uncertainty. This strategy		
19	might include accelerate characterization of		
20	waste from the suspected worst-case tanks and		
21	waste types; acceleratedaccelerate		
22	completion of the large-scale testing in an		

		Page
1	effort to define the operational envelope for	
2	the PJM vessels; design the waste retrieval	
3	facility with mixing and sampling capability	
4	engineered to protect the operational envelope	
5	established by the large-scale testing; and	
6	design a small pilot plan capability to verify	
7	the acceptance of feed batches to the WTP.	
8	This ends my prepared remarks and	
9	we'd be happy to try to answer any Board	
10	questions.	
11	CHAIRMAN WINOKUR: Thank you, Mr.	
12	Kasdorf. Do Board members have any questions	
13	at this time of the staff?	
14	I can assure you, in the last few	
15	months, the Board members have had a lot of	
16	questions for the staff.	
17	Hearing none, I'd now like to	
18	invite the first panel of witnesses from the	
19	Department of Energy and its contractor	
20	organizations to take their seats. I'm going	
21	to take thean opportunity to introduce them	
22	as they come up.	

		Page
1	Dr. Ines Triay. Dr. Triay is the	
2	assistant secretary of Energy for Environment	
3	Management.	
4	Mr. Dale Knutson. Mr. Knutson is	
5	the federal project director for the Waste	
б	Treatment Plant.	
7	Dr. David Dickey. Dr. Dickey is	
8	an expert consultant on mixing, who provided	
9	services to the Waste Treatment Plant and tank	
10	farm contractor. He was the author of	
11	Bechtel's external flowsheet review team	
12	concern on tank mixing.	
13	Dr. Loni Peurrung. Dr. Peurrung	
14	was the product line manager for environmental	
15	products at Pacific Northwest National	
16	Laboratory. Dr. Peurrung was responsible for	
17	the laboratory's test program to evaluate tank	
18	mixing.	
19	Dr. David Kosson is the chairman	
20	of the DOE-sponsored consortium for risk	
21	evaluation with stakeholder participation.	
22	This consortium, drawn from academia, provide	

		Page	60
1	the DOE with independent assessments on tank	_	
2	mixing.		
3	Mr. Frank Russo is the Bechtel		
4	project director for the Waste Treatment		
5	Plant.		
6	Mr. Greg Ashley is the Bechtel		
7	manager of engineering for the Waste Treatment		
8	Plant.		
9	Mr. Leo Sain is the URS executive		
10	vice president for performance assurance and		
11	operations.		
12	And Ms. Donna Busche is the URS		
13	nuclear safety manager for the Waste Treatment		
14	Plant.		
15	Welcome. Does any member of the		
16	panel with to submit written testimony at this		
17	time.		
18	(No response.)		
19	CHAIRMAN WINOKUR: The hearing		
20	record will be kept open for a fairly long		
21	period of time, so if you wish to do that at		
22	a later time, that will be okay.		

		Page	61
1	Let me say, to start with, that we		
2	have a lot of material to cover. The Board		
3	has chosen its panelists very carefully and		
4	request that panelists alone answer questions		
5	that are directed to them to the best of their		
6	ability.		
7	If a panelist would like to take a		
8	question for the record, your answer to that		
9	question will be entered into the record of		
10	this hearing at a later time.		
11	And so with that, I'm going to		
12	start with the first question. It'll actually		
13	be going to Dr. Peurrung. It won't be the		
14	last question I have for you today; but the		
15	first. And I think we all know that one of		
16	the measures that the Department of Energy		
17	uses to sense whether a technology is able to		
18	accomplish its intended mission, or its		
19	intended function, is called the technology		
20	readiness level.		
21	And another way I think of that		
22	is, what is the maturity of the technology?		

		Page
1	In a recent report to the project of this	
2	year, PNL researchers wrote the following. It	
3	was actually included in an e-mail from Terry	
4	Walton, who was the PNNL director of energy	
5	and environmental programs, to use Mr. Russo.	
б	He wrote, "There has been a	
7	fundamental misperception about the maturity	
8	of PJM technology. This is new technology	
9	which is unproven for applications involving	
10	significant amounts of solids.	
11	So my first question to you, Dr.	
12	Peurrung, is: Can you elaborate on that a	
13	little bit.	
14	DR. PEURRUNG: Well, the document	
15	that you're referring to, Dr. Winokur, was a	
16	list of vulnerabilities, and essentially	
17	residual risks that we prepared at the request	
18	of Bechtel National. What risk we saw	
19	remaining, once the major issue, 3-M-3 issue	
20	had been closed, and it is true that there is	
21	relatively little experience out in the	
22	industrial sector with mixers of this type,	

Neal R. Gross & Co., Inc. 202-234-4433

62

		Page	63
1	particularly at these sorts of solids loading.		
2	That was not the only vulnerability that was		
3	in that document, and it has been made		
4	available for the public.		
5	CHAIRMAN WINOKUR: So I mean you		
б	certainly agree with the statement made there,		
7	is PNNL's perception that this is not a mature		
8	technology		
9	DR. PEURRUNG: No		
10	CHAIRMAN WINOKUR:for this		
11	intended application?		
12	DR. PEURRUNG: Given the		
13	relatively small amount of experience in the		
14	industrial community with PJMs.		
15	CHAIRMAN WINOKUR: Okay. And I		
16	should ask you that question, Mr. Russo. What		
17	is your sense of the maturity of this		
18	technology at this time?		
19	MR. RUSSO: It is a new		
20	technology. However, it's a proven technology		
21	in different applications. The technology has		
22	been in use at Sellafield, for, I believe over		

		Page	64
1	20 years, and we visit Sellafield to gain		
2	operational knowledge from them in terms of		
3	the use of PJMs.		
4	I would like to not that the e-		
5	mail that Terry Walton sent to me was at my		
6	request, and part of our overall		
7	vulnerabilities assessment that drives our		
8	residual risk analysis, that we presented to		
9	the Department of Energy as part of the		
10	closure documentation for M-3.		
11	CHAIRMAN WINOKUR: All right.		
12	Thank you for that. And I guess you raise the		
13	issue of the use of PJMs at the Sellafield		
14	vitrification facility, and it's my		
15	understanding, and you just said so, that a		
16	team, I guess a team of DOE folks, and		
17	contractors, went out recently to visit		
18	Sellafield and to get some sense of, you know,		
19	the use of this technology for your intended		
20	application. Would that be true?		
21	MR. RUSSO: That is true.		
22	CHAIRMAN WINOKUR: And I think the		

		Page	65
1	only panelist we have here, who was actually		
2	on that trip, was Ms. Busche; correct?		
3	MS. BUSCHE: True.		
4	CHAIRMAN WINOKUR: And can you		
5	provide any insights into what you learned, in		
б	terms of the experience of the Sellafield		
7	facility in the sue of pulse jet mixers, but		
8	more specifically, the intended operation		
9	here, at Hanford, which includes the need to		
10	mix significant amounts of solids.		
11	MS. BUSCHE: Right. There were		
12	someduring our trip, there were some notable		
13	differences, right off the bat. In		
14	discussions with Sellafield, pulse jet mixers		
15	for their range of feed that's presented to		
16	their commercial production, is a very, very		
17	consistent band, and their solids range is		
18	significantly lower, that they would expect to		
19	see with their pulse jet mixers.		
20	Their pulse jet mixers were also		
21	coupled with a sparger design similar to ours,		
22	but they used the pulse jet mixers and the		

		Page	66
1	design of their spargers to complete the full		
2	mixing of their tanks, and their vessels were		
3	significantly smaller in size.		
4	So my main focus, on my journey,		
5	was to understand how to control the pulse jet		
6	mixers for many of the items that were		
7	identified in the opening testimony.		
8	So there were some significant		
9	differences. I did learn a lot on howas we		
10	move forward, to develop the control logic for		
11	those pulse jet mixers.		
12	CHAIRMAN WINOKUR: What were the		
13	range of solids that they were mixing at the		
14	Sellafield facility?		
15	MS. BUSCHE: I believe it was		
16	around 5 percent.		
17	CHAIRMAN WINOKUR: Right. And did		
18	you ask them for any insight into your		
19	application here, at Hanford, where the		
20	percentage weight saltweight percentage of		
21	salt would be considerably higher?		
22	MS. BUSCHE: Not specifically on		

the weight percent solids. I did not. 1 No. 2 CHAIRMAN WINOKUR: Anything else 3 that they shared with you, that gave you 4 insight into the challenges you would face 5 here at the Hanford Waste Treatment Plant? 6 MS. BUSCHE: I did inquire, some 7 questions with respect to black cell 8 technology because it is new to me. I've 9 grown up in the DOE business with canyons and cover block. So I did ask, have PJMs failed? 10 Again, they indicated for their range of 11 12 feedstock, it predominantly was not an issue. But they have had instances where they've had 13 14 to enter a black cell to repair what they coined to me as a failed vessel, and it was--15 you know it's--there will be, if we ever have, 16 17 I think, some good lessons learned from what 18 they had to do to go in and repair that 19 vessel, and it was basically on the cycling of 20 the pulse jet mixers when they got a feed spec 21 that was off their normal input to their 22 production line.

> Neal R. Gross & Co., Inc. 202-234-4433

Page 67

		Pa
1	CHAIRMAN WINOKUR: Did you	
2	specifically share with them the kinds of	
3	operations you were expecting to perform here,	
4	at Hanford, and ask for their advice?	
5	MS. BUSCHE: Not specifically, no,	
6	is the short answer to that. I did inquire	
7	some questions about the overall evolution of	
8	the high-level waste facility, not just pulse	
9	jet mixers but how did their whole flow work	
10	with solids, and there were some discussions	
11	of lines, critical velocities going downline.	
12	So they were more for my general edification,	
13	is was I comparing apples and apples, or was	
14	their design dissimilar to what I would expect	
15	it, at the pre-treatment facility?	
16	CHAIRMAN WINOKUR: Did you learn	
17	anything meaningful there, that would help you	
18	in terms of what you're doing at Hanford here?	
19	MS. BUSCHE: The most striking, my	
20	take-away, or lessons learned, was a	
21	discussion related to plugging of the lines.	
22	Did they have any problems? The feedback I	

Page 68

		Page	69
1	gained from the engineers were that their		
2	lines are gravity. They don't relyyou know,		
3	gravity works to move the solids.		
4	I did indicate that we had long		
5	lines of, you know, long lengths of pipe, that		
б	we might need to move our solids from vessel		
7	to vessel in our process. And his reaction		
8	was that that would give us difficulty and		
9	maybe a wrong design.		
10	But I'm not the design expert on		
11	this panel. It was more for my understanding		
12	of how am I going to write the control		
13	strategy from when the solids do enter our		
14	feed vessels to the day I exit.		
15	CHAIRMAN WINOKUR: Right.		
16	MS. BUSCHE: So I wasn't asking		
17	design questions, just trying to understand.		
18	CHAIRMAN WINOKUR: Let me ask you,		
19	Mr. Sain. You're a URS executive, and URS is		
20	clearly part of the consortium that owns and		
21	operates Sellafield. So have you been using		
22	the experience that URS has gained over at		

		Page	70
1	Sellafield to inform the Waste Treatment		
2	Plant?		
3	MR. SAIN: Yes, we have. In fact,		
4	we actually brought Todd Wright, deputy		
5	director, for a visit to WTP, and we intend to		
6	continue that relationship.		
7	CHAIRMAN WINOKUR: All right.		
8	Thank you. I'll turn now to Ms. Roberson.		
9	VICE CHAIR ROBERSON: Good		
10	morning. I'd like to thank you all for being		
11	here. I'd like to actually start out,		
12	questioning the representatives from PNNL, Dr.		
13	Dickey and Dr. Kosson. I'll ask Dr. Kosson,		
14	first, if you can briefly describe the nature,		
15	extent, and timing of your organization's		
16	involvement in forming the project on the WTP.		
17	DR. KOSSON: Certainly, Dr.		
18	Roberson. In 2006, CRESP was requested by the		
19	then DOE site manager, who was Roy Schepens,		
20	and also from headquarters, the then deputy		
21	assistant secretary, Mark Gilbertson, to form		
22	a technical review team as an external		

		Page	71
1	external independent technical review team for		
2	certain issues that were identified by the		
3	EFRT program. Amongst the ones that we were		
4	asked to look at was the M-3, or PJM mixing		
5	issue.		
6	And as a result of that, CRESP		
7	sought out technical expertise to form a panel		
8	that then followed the evolution of DOE's		
9	responses to the PJM mixing, through to		
10	DecemI'm sorrytill June of 2010.		
11	VICE CHAIR ROBERSON: Thank you,		
12	sir. Dr. Dickey, could you share with us the		
13	response to the same question.		
14	DR. DICKEY: Could you repeat the		
15	question.		
16	VICE CHAIR ROBERSON: Can you		
17	briefly describe the nature, extent, and		
18	timing of your involvement in advising the		
19	project.		
20	DR. DICKEY: I became involved in		
21	the project with the FRT in 2005-2006, as a		
22	member of the FRT, and as a result of that,		

2 c	after having reviewed the general characteristics of the PJM mixing applied to chese tanks, concluded that there were several potential problems in terms of the design or	
	chese tanks, concluded that there were several	
3 t		
	potential problems in terms of the design or	
4 p		
5 t	the extent of the mixing capability, and	
6 a	almost any plant processing a variety of	
7 m	naterials will experience some possible	
8 a	accumulation of solids, and certainly that was	
9 a	an issue with thea possibility.	
10	Since then, I have been involved	
11 i	in periodic reviews of the work done by PNNL,	
12 t	the work done at MCE [Mid-Columbia	
13 E	Ingineering], and most recently, since about	
14 J	June of 09, worked fairly extensively with BNI	
15 t	to help establish and understand the mixing	
16 c	characteristics of the vessels.	
17	VICE CHAIR ROBERSON: Dr. Dickey,	
18 c	can you please inform the public of your area	
19 o	of expertise and how you came about that	
20 e	expertise.	
21	DR. DICKEY: Yes. My area of	
22 e	expertise is truly industrial mixing. I have,	

		Page
1	in my career, worked for four, five different	
2	companies, or combinations of companies, that	
3	have worked with both liquid and dry powder	
4	mixing equipment, slurries and things of that	
5	sort, and have done extensive work in small-	
б	scale testing and scale-up to industrial scale	
7	equipment.	
8	VICE CHAIR ROBERSON: Thank you,	
9	sir.	
10	Dr. Peurrung, can you characterize	
11	the nature, extent, and timing of the	
12	involvement of PNNL with the project.	
13	DR. PEURRUNG: Well, Pacific	
14	Northwest National Laboratory has been	
15	supporting the Waste Treatment Plant project	
16	for more than 10 years now, back to 1999,	
17	which included support to its predecessor,	
18	BNFL Limited.	
19	We've been providing a variety of	
20	science and technology support, including	
21	experimental testing performed at our	
22	facilities, and other sorts of modeling and	

73

Page 74 consulting services, not only to resolve this 1 2 particular issue on adequacy of mixing, but 3 also several other issues. M-1, the pipeline 4 plugging issue. M-12 on the adequacy of 5 scale-up for some of the chemical pre-6 treatment approaches, as well as other issues 7 that the WTP project has brought to us for 8 consultation. 9 VICE CHAIR ROBERSON: And Dr. 10 Peurrung, I know you're representing your 11 organization. How many scientists stand 12 behind you? DR. PEURRUNG: Hundreds, literally 13 14 hundreds of Pacific Northwest National 15 Laboratory staff have worked on this project 16 over the years. 17 Okay. VICE CHAIR ROBERSON: Thank 18 you. 19 Dr. Kosson, have you been able to 20 maintain an understanding or awareness of the 21 progress on the project relative to the areas 22 you've advised?

		Page	75
1	DR. KOSSON: Over the period of		
2	time that we were engaged with the review of		
3	the project, we had periodic meetings with DOE		
4	and their contractor staff. We reviewed		
5	thousands of pages of technical material that		
6	they provided to us, both from the contractors		
7	and from DOE, as well as outside technical		
8	material from the peer review technical		
9	literature.		
10	VICE CHAIR ROBERSON: Okay. Can		
11	you specifically tell us, based on that		
12	awareness, what concerns raised by your		
13	organization remain unresolved.		
14	DR. KOSSON: I think that your		
15	staff member quoted our CRESP report		
16	accurately, earlier, about the nature of them.		
17	That the final conclusion that we had, that he		
18	quoted, and obviously we stand behind, that		
19	there are several important PJM vessel design		
20	uncertainties and definitions of operating		
21	requirements that remain to be resolved,		
22	including revision of the criticality		

Page 76 controls, validation of scale-up relationships 1 2 for PJM zone of influence, integrated 3 validation of vessel performance, recovery 4 from a design basis event, and viable sampling 5 strategies that result in PJM performance and 6 programmatic risks. 7 The greatest risk is that the actual zone of influence during WTP operations 8 9 is smaller than predicted by the current design basis, and therefore the solids 10 11 accumulation may require more frequent cleanout than predicted. 12 13 I think that's a very succinct 14 summary, and we still have that. 15 VICE CHAIR ROBERSON: Okay. Thank 16 you. 17 Dr. Dickey, I assume you have also 18 remained aware of the progress of the project on concerns raised by yourself in the flow 19 20 review team. 21 DR. DICKEY: Yes. I have been 22 very active in that part of it, and have

Page 77 certainly approached it from a little 1 2 different perspective of very much a combination of academic and industrial 3 4 performance, on both the mixing 5 characteristics and the scale-up, and I would 6 be the first to admit, I think, that I have 7 learned a great deal from the beginning of 8 this project, and would very definitely state 9 that there are significant differences in the 10 way the PJMs operate versus other types of 11 mixing equipment, and even other types of objectives for the mixing equipment. 12 13 VICE CHAIR ROBERSON: Okay. 14 Are there concerns, that you have 15 been a part of raising, that remain unresolved 16 today? 17 DR. DICKEY: My concerns I think 18 fall outside of the basic operation of the 19 They're certainly the kind mixing equipment. 20 of thing that, as has been brought up, of 21 being able to ensure that the feed to the WTP 22 falls within the required specifications, and

		Page	78
1	that the operation of the plant will be such,		
2	that the vessels involving PJMs do not		
3	experience higher levels of solids		
4	concentration than the designs have been		
5	tested and evaluated for.		
6	VICE CHAIR ROBERSON: So let me		
7	make sure I understand. Under the assumption		
8	that the tank farms can meet the		
9	specifications, the WAC specifications, and		
10	that the design operates as specified, you		
11	don't have any open concerns about mixing?		
12	DR. DICKEY: Not about the mixing		
13	part of it.		
14	VICE CHAIR ROBERSON: Okay. Dr.		
15	Peurrung, the same question to you. And we		
16	have time. You can be specific, please.		
17	DR. PEURRUNG: Okay. All right.		
18	Well, you know, Pacific Northwest National		
19	Laboratory was asked by the project to do some		
20	scale testing, originally, we began those		
21	discussions in 2007, to look specifically at		
22	the adequacy of mixing, and at the time we		

Page 79 were asked to rate the tanks, how well the 1 2 mixing systems would perform in those vessels. And we did that testing in 2008 at 3 4 three scales, so that we could try to derive 5 these scaling factors for the tanks, to scale 6 up to full scale. The testing we did was 7 limited to noncohesive materials and we didn't 8 use waste simulants. We were using a couple 9 different sizes of mono-disperse beads. The mixing criteria, at the time, 10 as the staff discussed, were to make sure that 11 12 the material was at least suspended off the bottom of the vessels, and also that the pump 13 14 inlet concentration was no more than 20 15 percent, because it was felt that higher 16 solids loadings than that would clog the pump 17 inlets. 18 So we performed that testing and we developed a couple of correlations, one 19 20 physics-based and one statistics-based, and 21 we've benchmarked the correlations from the 22 scaled testing that we did to some other data

		Page	80
1	that we've done from testing for the project		
2	much earlier, that used a more complex		
3	simulant.		
4	And from benchmarking the		
5	correlations, which we found to agree with		
6	previous data quite well, we concluded, as the		
7	staff mention in their report, that, well,		
8	four of the vessel types appear to be adequate		
9	against both of those mixing criteria. Two of		
10	them are marginal and seven of them failed to		
11	meet those criteria, and we published that in		
12	a report. The final version of that report		
13	came out in 2009.		
14	We did have that report		
15	independently, technically reviewed, at our		
16	own expense. We're aware that since that		
17	time, since the time of the report, that there		
18	have been changes made to the mixing system		
19	designs, in some cases physical changes, in		
20	some cases changes in the operating conditions		
21	and the material that may be sent to vessels.		
22	We're also ware that they've		

Г

Page 81 changed the mixing criteria from an off-bottom suspension approach to the bottom-clearing approach, looking at zone of influence, and as we stated in our answer to Question 18, we do believe that this represents a lesser mixing criterion. We felt that even just critical suspension was essentially a minimum criteria for mixing. But we recently actually had the opportunity to take our scale-up correlations

8 suspension was essentially a minimum criteria 9 for mixing. But we recently actually had the 10 opportunity to take our scale-up correlations 11 and test them in the system that was set up at 12 Mid Columbia Engineering with a more prototypic system, and we did actually find 13 14 that they work quite well, now that we have 15 corrected, made some corrections to them that 16 account for operating a more prototypic 17 system. 18 They still predict to us that 19 against the mixing criteria that we support, 20 that we feel are conservative and appropriate 21 for the plant, that substantially higher 22 velocities are going to be needed in order to

1

2

3

4

5

6

7

i		
		P
1	achieve suspension in the vessels than is	
2	currently planned in the designs, to our	
3	understanding of those designs.	
4	VICE CHAIR ROBERSON: Okay. Now	
5	Dr. Dickey, throughout this hearing, we're	
6	going to explore some of those concerns, the	
7	concerns, previous and current on the project,	
8	and I understand the assumption that the feed	
9	will meet whatever specification there is.	
10	But as a mixing expert, can you tell us what	
11	the assumptions are about mixing, that make	
12	you comfortable.	
13	DR. DICKEY: I think that's	
14	probably the right starting point, because	
15	what evolved out of this project, the concern	
16	that I had raised with the EFRT was the	
17	accumulation of solids. The net effect of	
18	this, and some of the things associated with	
19	the way we characterize the mixing, came about	
20	really by focusing on two primary objectives.	
21	One was no accumulation, and the	
22	other was mobilization of a settled bed of	

		ł
1	solids. Those two items were completely	
2	different approaches, and as I mentioned	
3	earlier, part of the things that we learned	
4	about this.	
5	What we found, or what my initial	
6	concern was about accumulation, once having	
7	seen how PJMs operate, in simplest form, the	
8	PJM is capable of lifting the solids off of	
9	the bottom during the power stroke, and then	
10	there's a refill period during which the	
11	rapidly-settling particles return to the	
12	bottom of the tank.	
13	The initial concern was that, in	
14	effect, you were only able to withdraw solids	
15	that were lifted off the bottom for no more	
16	than a quarter or a third of the cycle, and	
17	the rest of the time these solids that had the	
18	potential for accumulating would rest on the	
19	bottom.	
20	After some initial testing, we	
21	actually found that almost the reverse	
22	happened. That when the pulse fired, there	

Neal R. Gross & Co., Inc. 202-234-4433

Page 83

		Page
1	was sufficient material lifted off of the	
2	bottom, that you actually withdrew a high	
3	concentration of the rapidly-settling	
4	particles, and a higher concentration of all	
5	of the particles. In effect, what ended up	
6	happening was almostand I say almostto the	
7	point of not suspending the particles very	
8	well, actually gave you a higher percentage of	
9	the rapidly settling difficult-to-suspend	
10	particles actually leaving the vessel when you	
11	were doing a pump-out.	
12	The net effect is that this change	
13	from off-bottom suspension to on-bottom motion	
14	actually appears to be an effective way of	
15	avoiding some of the problems with	
16	accumulation of solids.	
17	The tests that were conducted were	
18	conducted along those lines. The simulants	
19	that were used, and some of the things that	
20	were measuredand this has evolved, over even	
21	the test program over the last year, of the	
22	kind of thing of testing with a tungsten	

84

		Page
1	carbide material that more nearly matches what	
2	a crystalline plutonium oxide material might	
3	look like.	
4	Those were found to come out,	
5	preferentially, as a result of the operation	
6	of the PJM mixers. So it appears that, based	
7	on everything that I've seen as far as the	
8	technology and the technique, that this has	
9	been a logical shift in the way we went about	
10	doing it.	
11	All of those tests, and all of	
12	those evaluations were done on the basis of	
13	the one-third scale-down exponent, which said	
14	that the tests that were run in the small	
15	scale were run at greatly-reduced velocities	
16	compared to the design velocity, the	
17	anticipated velocity, the full scale.	
18	That's the wayand I teach a	
19	course on scale-upsays go in, define what	
20	you want to do, and figure out what you need	
21	to test. The problem that's arisen is the	
22	understanding of this .18 exponent, and I kind	

85

Page 86

1 of was backed into that one.

2	My approach was to take a look at
3	the material sitting on the bottom of the
4	tank, more nearly represents the kind of
5	situation that existed in the non-Newtonian
6	study. The non-Newtonian study would have
7	indicated that equal velocity would have been
8	adequate to resuspend or mobilize this
9	material that was sitting on the bottom.
10	That would have resulted in a zero
11	exponent. That would have resulted in the
12	test being run at the corresponding velocity,
13	the full scale. My recommendation was to use
14	a one-fifth exponent, partially influenced by
15	this about .2 that came out of the theory,
16	but, really, as a conservative exponent as
17	opposed to using equal velocity. So that the
18	resuspension or the mobilization of settled
19	material really came about at the higher test
20	velocity but not for the purpose of
21	establishing whether or not you were
22	suspending the solids.

		Page 87
1	VICE CHAIR ROBERSON: Okay. Well,	
2	we're going to explore the concerns that you	
3	guys have summarized. I think for me, at this	
4	point, I'd like to go to Mr. Russo.	
5	Mr. Russo, I assume you are	
6	familiar with concerns raised by these experts	
7	in the organizations they represent.	
8	MR. RUSSO: Yes.	
9	VICE CHAIR ROBERSON: Is there any	
10	concern, that they have raised to the project,	
11	that you disagree with, you think is	
12	erroneous, or wrong?	
13	MR. RUSSO: We are aware of all	
14	the concerns that have been raised by all of	
15	our expert panels and consultants. All have	
16	been captured in our vessel analysis data	
17	sheets. We have done our analysis of those	
18	concerns in conjunction with our testing, and	
19	prepared what we considered a residual risk	
20	for each of those concerns, for each of those	
21	vessels, vessel by vessel, and presented that	
22	as part of our closure packages to the	

Page 88

1 Department of Energy.

2	We also, in our closure packages,
3	in recognition of their concerns, and our own
4	desires to advance the operability of the
5	plant, we also recommended the larger-scale
6	testing protocol to deal with some of the
7	scaling questions, clearly, to deal with a
8	simulant that would be representative, because
9	we feel that the simulant, for Newtonian,
10	particularly, starting with water, might be
11	overly conservative, and some of our
12	consultants have shared that concern.
13	When we did agree on the actual
14	particle distribution, the PNNL reports that
15	were referred to earlier, talked to a particle
16	distribution that went out to 200 micron, and
17	our testing criteria for Newtonian went out to
18	700 micron.
19	So we feel that the large-scale
20	setting will address some of the concerns
21	raised by our own analysis and the analysis of
22	our outside support consultants.

	Page 89
1	VICE CHAIR ROBERSON: Okay. And
2	so let me just make sure I understand. It
3	isn't, at this point, that you disagree with
4	any concerns raised by these experts?
5	MR. RUSSO: No.
6	VICE CHAIR ROBERSON: Okay.
7	MR. RUSSO: I don't think we
8	disagree at all. I think to the point, it's
9	how you then deal with those concerns, how you
10	analyze them in risk space, and then looking
11	at the suite of risks, including the risk to
12	the actual \$12.263 billion ceiling that the
13	Congress has put on this facility, you measure
14	those risks, you evaluate them in a very
15	dispassionate way, that's our job, and we
16	present that information to the department, as
17	both owner and regulator, to ensure that they
18	fully understand the risks, and we provide
19	them our recommendations on how to deal with
20	them including the large-scale testing.
21	VICE CHAIR ROBERSON: Let me just
22	ask, because I understand what you just said,

Γ

		Page 9	90
1	but I guess what I'm trying to get to is: Are		
2	there concerns that have been raised by these		
3	organizationsand I'm going to use your		
4	vernacular, that you've put in to the, we'll		
5	figure that out later, bucket, because you		
6	don't consider it to be as significant as		
7	maybe they did?		
8	MR. RUSSO: I wouldn't call it to,		
9	we'll figure it out later, vernacular. There		
10	are concerns that need to be addressed. The		
11	small-scale testing platform, no matter how we		
12	configure it, will leave some individuals with		
13	concerns.		
14	So we then look to, from a overall		
15	project perspective, what is the best way to		
16	address our own questions of operability and		
17	our own recommendations to the department on		
18	how to balance the capital investment with the		
19	operating parameters that you can perform		
20	under.		
21	I would like to state that from a		
22	BNI perspective, we are very confident that		

the PJMs meet their functional requirement. 1 2 They will adequately mix, they will deal with 3 hydrogen, they will mix to the point that we 4 can work our process flowsheet and make 5 quality class. 6 We have included the hill dilution 7 and removal that you spoke of earlier, because 8 while we believe, and are very comfortable, 9 that we will not get the kind of accumulation 10 that would lead to a criticality, we recognize 11 that something that's going to be sealed off for 40 years, even if there is the ability, 12 13 potentially, to get into it, is not preferred. 14 And as a result, we felt that the 15 heel dilute and removal process, with the 16 ability to put cameras in service ports, would 17 provide a higher degree of confidence for both 18 our co-located worker and the public, that we can achieve the mission. 19 20 When you then look at what large-21 scale testing will do assuming that you accept 22 my premise that we are comfortable the PJMs

> Neal R. Gross & Co., Inc. 202-234-4433

Page 91

Page 1 will perform its functional requirement, what 2 we'll do is determine if there are any 3 operational limitations. 4 And I say, if any. Our own 5 assessment says that we will be able to 6 perform, as designed, to the mission life 7 cycle. But we recognize that that's a very 8 controversial subject. So a large-scale test 9 will provide a high degree of confidence, both 10 in the physical design that we are very 11 comfortable with, the internals of the 12 vessels, as well as the operating parameters 13 that those vessels will have to perform under. 14 VICE CHAIR ROBERSON: Okay. And I 15 have one last question, so I cannot hog all 16 the time for my colleagues. Madam Secretary 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you 22 familiar with the concerns raised by these			
 we'll do is determine if there are any operational limitations. And I say, if any. Our own assessment says that we will be able to perform, as designed, to the mission life cycle. But we recognize that that's a very controversial subject. So a large-scale test will provide a high degree of confidence, both in the physical design that we are very comfortable with, the internals of the vessels, as well as the operating parameters that those vessels will have to perform under. VICE CHAIR ROBERSON: Okay. And I have one last question, so I cannot hog all the time for my colleagues. Madam Secretary and I apologize in advance, Mr. Knutson. Either one of you can answer this. I will probably give deference, based on your newness to the project. I asked the same question of the Department of Energy in regard to are you 			Page
3 operational limitations. 4 And I say, if any. Our own 5 assessment says that we will be able to 6 perform, as designed, to the mission life 7 cycle. But we recognize that that's a very 8 controversial subject. So a large-scale test 9 will provide a high degree of confidence, both 10 in the physical design that we are very 11 comfortable with, the internals of the 12 vessels, as well as the operating parameters 13 that those vessels will have to perform under. 14 VICE CHAIR ROBERSON: Okay. And I 15 have one last question, so I cannot hog all 16 the time for my colleagues. Madam Secretary 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	1	will perform its functional requirement, what	
4And I say, if any. Our own5assessment says that we will be able to6perform, as designed, to the mission life7cycle. But we recognize that that's a very8controversial subject. So a large-scale test9will provide a high degree of confidence, both10in the physical design that we are very11comfortable with, the internals of the12vessels, as well as the operating parameters13that those vessels will have to perform under.14VICE CHAIR ROBERSON: Okay. And I15have one last question, so I cannot hog all16the time for my colleagues. Madam Secretary17and I apologize in advance, Mr. Knutson.18Either one of you can answer this. I will19probably give deference, based on your newness20to the project. I asked the same question of21the Department of Energy in regard to are you	2	we'll do is determine if there are any	
5assessment says that we will be able to6perform, as designed, to the mission life7cycle. But we recognize that that's a very8controversial subject. So a large-scale test9will provide a high degree of confidence, both10in the physical design that we are very11comfortable with, the internals of the12vessels, as well as the operating parameters13that those vessels will have to perform under.14VICE CHAIR ROBERSON: Okay. And I15have one last question, so I cannot hog all16the time for my colleagues. Madam Secretary17and I apologize in advance, Mr. Knutson.18Either one of you can answer this. I will19probably give deference, based on your newness20to the project. I asked the same question of21the Department of Energy in regard to are you	3	operational limitations.	
6 perform, as designed, to the mission life 7 cycle. But we recognize that that's a very 8 controversial subject. So a large-scale test 9 will provide a high degree of confidence, both 10 in the physical design that we are very 11 comfortable with, the internals of the 12 vessels, as well as the operating parameters 13 that those vessels will have to perform under. 14 VICE CHAIR ROBERSON: Okay. And I 15 have one last question, so I cannot hog all 16 the time for my colleagues. Madam Secretary 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	4	And I say, if any. Our own	
7 cycle. But we recognize that that's a very 8 controversial subject. So a large-scale test 9 will provide a high degree of confidence, both 10 in the physical design that we are very 11 comfortable with, the internals of the 12 vessels, as well as the operating parameters 13 that those vessels will have to perform under. 14 VICE CHAIR ROBERSON: Okay. And I 15 have one last question, so I cannot hog all 16 the time for my colleagues. Madam Secretary 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	5	assessment says that we will be able to	
8controversial subject. So a large-scale test9will provide a high degree of confidence, both10in the physical design that we are very11comfortable with, the internals of the12vessels, as well as the operating parameters13that those vessels will have to perform under.14VICE CHAIR ROBERSON: Okay. And I15have one last question, so I cannot hog all16the time for my colleagues. Madam Secretary17and I apologize in advance, Mr. Knutson.18Either one of you can answer this. I will19probably give deference, based on your newness20to the project. I asked the same question of21the Department of Energy in regard to are you	6	perform, as designed, to the mission life	
 9 will provide a high degree of confidence, both in the physical design that we are very comfortable with, the internals of the vessels, as well as the operating parameters that those vessels will have to perform under. 14 VICE CHAIR ROBERSON: Okay. And I have one last question, so I cannot hog all the time for my colleagues. Madam Secretary and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will probably give deference, based on your newness to the project. I asked the same question of the Department of Energy in regard to are you 	7	cycle. But we recognize that that's a very	
 in the physical design that we are very comfortable with, the internals of the vessels, as well as the operating parameters that those vessels will have to perform under. VICE CHAIR ROBERSON: Okay. And I have one last question, so I cannot hog all the time for my colleagues. Madam Secretary and I apologize in advance, Mr. Knutson. Either one of you can answer this. I will probably give deference, based on your newness to the project. I asked the same question of the Department of Energy in regard to are you 	8	controversial subject. So a large-scale test	
11 comfortable with, the internals of the 12 vessels, as well as the operating parameters 13 that those vessels will have to perform under. 14 VICE CHAIR ROBERSON: Okay. And I 15 have one last question, so I cannot hog all 16 the time for my colleagues. Madam Secretary 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	9	will provide a high degree of confidence, both	
12 vessels, as well as the operating parameters 13 that those vessels will have to perform under. 14 VICE CHAIR ROBERSON: Okay. And I 15 have one last question, so I cannot hog all 16 the time for my colleagues. Madam Secretary 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	10	in the physical design that we are very	
13 that those vessels will have to perform under. 14 VICE CHAIR ROBERSON: Okay. And I 15 have one last question, so I cannot hog all 16 the time for my colleagues. Madam Secretary 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	11	comfortable with, the internals of the	
14VICE CHAIR ROBERSON: Okay. And I15have one last question, so I cannot hog all16the time for my colleagues. Madam Secretary17and I apologize in advance, Mr. Knutson.18Either one of you can answer this. I will19probably give deference, based on your newness20to the project. I asked the same question of21the Department of Energy in regard to are you	12	vessels, as well as the operating parameters	
 have one last question, so I cannot hog all the time for my colleagues. Madam Secretary and I apologize in advance, Mr. Knutson. Either one of you can answer this. I will probably give deference, based on your newness to the project. I asked the same question of the Department of Energy in regard to are you 	13	that those vessels will have to perform under.	
16 the time for my colleagues. Madam Secretary 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	14	VICE CHAIR ROBERSON: Okay. And I	
 17 and I apologize in advance, Mr. Knutson. 18 Either one of you can answer this. I will 19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you 	15	have one last question, so I cannot hog all	
Either one of you can answer this. I will probably give deference, based on your newness to the project. I asked the same question of the Department of Energy in regard to are you	16	the time for my colleagues. Madam Secretary	
19 probably give deference, based on your newness 20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	17	and I apologize in advance, Mr. Knutson.	
20 to the project. I asked the same question of 21 the Department of Energy in regard to are you	18	Either one of you can answer this. I will	
21 the Department of Energy in regard to are you	19	probably give deference, based on your newness	
	20	to the project. I asked the same question of	
22 familiar with the concerns raised by these	21	the Department of Energy in regard to are you	
	22	familiar with the concerns raised by these	

Neal R. Gross & Co., Inc. 202-234-4433

Page 92

		Page	93
1	individuals and the organizations they		
2	represent, and are there concerns that they've		
3	raised, that you believe are invalid or		
4	erroneous?		
5	DR. TRIAY: I will start with my		
6	answer, and then I would like to take the		
7	opportunity to have Mr. Knutson complete, and		
8	give his own perspectives as a extremely		
9	experienced federal project director.		
10	First off, I think that it is		
11	important that we go back to the response that		
12	we have already shared with you.		
13	The strategy that we have		
14	designated to confirm the adequacy of the		
15	design is a phased approach. Phase I is the		
16	closure of the EFRT issue, and achievement of		
17	the targeted technology readiness level based		
18	on our issue response plan.		
19	Let me stop here for a moment to		
20	discuss the fact that the technology readiness		
21	assessment process is a process that the		
22	environmental management program has fully		

Γ

Page 94 embraced as part of these capital projects, 1 2 and the way that the technology readiness 3 assessment process works, is that once the issues associated with a technology are 4 5 identified, a maturation plan is put in place 6 to take the technology from one level of 7 readiness to a higher level of readiness. 8 That maturation plan exists for 9 the pulse jet mixers and that is exactly in 10 the process that we have been in, in order to 11 ensure that the readiness level is appropriate from the perspective of the Department of 12 13 Energy. 14 Phase II in our strategy to close this issue is the closure of additional issues 15 16 identified with the pulse jet mixing control 17 covers, suction line sign and sampling 18 systems. 19 Phase III is the completion of the 20 design change process to implement any 21 required vessel or supporting system changes, 22 and confirm the design of the post-jet mix

		Page 95
1	vessel system. The reason that is important	
2	is because the decision that the Department of	
3	Energy concurred with the design authority on,	
4	was to proceed with the design of pulse jet	
5	mixing, and the Department of Energy has laid	
6	out a very careful phased strategy to close on	
7	this particular issue.	
8	I would also like to point out	
9	that the Department of Energy, at the request	
10	of the secretary, chartered an environmental	
11	management advisory board, Tank Waste	
12	Subcommittee, to look at the closure of all of	
13	the issues associated with the EFRT review.	
14	And that group of experts also	
15	came to the conclusion that we should press	
16	forward with completion of EPC. I also would	
17	like to make some comments with respect to	
18	waste characterization.	
19	Now, you know, based on the	
20	comments made by the experts, that we have	
21	some concerns with respect to waste	
22	characterization. They assigned expert in	

Page 96 waste management. Process knowledge is 1 2 something that is an integral part of determining how waste is going to be 3 4 characterized. And I would like, at the time 5 that Mr. Rutland joins us in the next panel, to spend some time going through, in some 6 7 detail, the waste characterization efforts of 8 the Department of Energy and its contractors. 9 In short, we have a model that is 10 correctly predicting our observations. It is 11 not appropriate, because we have process knowledge, to simply say we have a very small 12 13 sampling subset, because the process knowledge 14 actually allows us to determine the specific, 15 it's said, of samples that are going to be 16 taken, and have those represent the conditions 17 of the waste--18 CHAIRMAN WINOKUR: Dr. Triay, we're going to be covering a lot of that 19 20 material, I think, in the next session. Could 21 you summarize your comments now? I think we 22 have a lot of material to cover, and we'd like

to move on from there. 1 2 DR. TRIAY: The summary of my 3 comments is that we have a phased approach for 4 the closure of this issue, and that our 5 colleagues at PNNL have stated that they have 6 looked at the results up to Phase I, not 7 anything past Phase I, and I think that that 8 is very important, to look at the issue 9 holistically, rather than just the snapshots 10 that our experts have looked at. 11 VICE CHAIR ROBERSON: Okay. Thank 12 you, Madam Secretary. 13 MR. KNUTSON: May I? 14 VICE CHAIR ROBERSON: Briefly, 15 please. Yes. 16 MR. KNUTSON: Thank you for 17 allowing me to chime in here just for a 18 moment. From a project perspective, part of 19 the assessment that we did over the last four 20 months was to evaluate the concerns, and to 21 understand that none of them, from a DOE 22 perspective, had been put into a bucket of

"deal with it later." 1 2 I think it's also important to 3 recognize that during this assessment process, 4 we actually looked at design modifications 5 that had been initiated as a part of the 6 concerns being recognized and realized, and 7 the mixing power was increased, distribution 8 of mixing power was improved, reduced solids 9 loading, heel dilution capabilities right at 10 access ports, right--these were all points 11 that were made following some of the prior 12 commentary. 13 I think it's very important that 14 the record reflect that we do recognize the 15 concerns and we have accepted the concerns. 16 We are addressing the concerns, and part of 17 the commitment for large-scale testing is for 18 the purpose of ensuring that a higher level of 19 confidence results in our understanding of how 20 these machines actually operate. 21 VICE CHAIR ROBERSON: Thank you, 22 sir.

1			
		Page	99
1	Mr. Chairman, I'm going to hold		
2	any further questions for the moment.		
3	CHAIRMAN WINOKUR: Okay. Thank		
4	you. Gee, that was kind of whirlwind tour.		
5	I think I'd like to kind a step back and spend		
6	a little more time discussing Phase I and		
7	Phase II testing, so at least I understand		
8	where we are.		
9	One of the questions the Board		
10	asked was Question 18, that PNNL provided a		
11	response to, Dr. Peurrung. And I think we've		
12	already gone over your background and your		
13	involvement in the process, and what were the		
14	goals of that testing again, very briefly?		
15	DR. PEURRUNG: Well, as I said,		
16	originally, when the test specification was		
17	written, the first objective of the test was		
18	to rate the mixing systems. It was basically		
19	a pass/fail on whether they would perform		
20	against the criteria that were developed along		
21	the way to planning the tests.		
22	CHAIRMAN WINOKUR: And we've		

		Page 100
1	talked about the two criteria that you felt	
2	were the most important, right?	
3	DR. PEURRUNG: Right. And the	
4	criteria were something that were developed	
5	over time. I think none of us had any	
6	intention that we were going to create	
7	completely homogeneously mixed tanks. But by	
8	the time we began testing, in 2008, BNI and	
9	PNNL had agreed that the appropriate criteria	
10	were off-bottom suspension and pump inlet	
11	solids concentration.	
12	CHAIRMAN WINOKUR: And the off-	
13	bottom suspension is an industry standard;	
14	right?	
15	DR. PEURRUNG: It is.	
16	CHAIRMAN WINOKUR: Okay. And how	
17	do you go about going from small vessels to	
18	larger vessels? I mean, is there a scaling	
19	fact, there's something you have to figure out	
20	to do?	
21	DR. PEURRUNG: There is. We did	
22	testing at three scales. We had, I believe,	

	Page 101
1	a 15-inch vessel, a 34-inch vessel and a 70-
2	inch vessel that we did testing in in one of
3	our facilities, the Applied Process
4	Engineering Laboratory.
5	And from taking those three data
6	points, it allows you to get a curve that you
7	can project out to full scale.
8	CHAIRMAN WINOKUR: So you need
9	more than one vessel size to be able to figure
10	out a scaling factor, right?
11	DR. PEURRUNG: Typically, unless
12	you're going to use some sort of conservative
13	rule of thumb that comes from industry.
14	CHAIRMAN WINOKUR: And I wanted to
15	go over I think we've already mentioned,
16	and I'm going to enter it into the record,
17	some sections of this report, WTP RPT 182 Rev.
18	A, and there are some sections that deal with
19	some vessel evaluations and rating of WTP
20	vessels.
21	DR. PEURRUNG: Correct.
22	CHAIRMAN WINOKUR: And I'm looking
	Neal R. Gross & Co., Inc.

Γ

Page 1021at the figures here, and I can kind a see on2the X and Y axis, these two different3variables you're talking about.4DR. PEURRUNG: Correct.5CHAIRMAN WINOKUR: And I see a6solid suspension metric on the X axis, and7what's that telling you in terms of the8critical suspension velocity?9DR. PEURRUNG: So the two axes on10the figure that you're looking at, one is11comparing the velocity that the mixing system12is designed to, the maximum velocity, against13what we calculate is the velocity required to14pick a cloud of particles up off the bottom15and suspend them.16And so if that ratio the ratio17of those two velocities is greater than one or18less than one, that tells you whether you are19meeting or not meeting those criteria.20Likewise, the other access then21looks at inlet concentration compared to 2022percent.		
2the X and Y axis, these two different3variables you're talking about.4DR. PEURRUNG: Correct.5CHAIRMAN WINOKUR: And I see a6solid suspension metric on the X axis, and7what's that telling you in terms of the8critical suspension velocity?9DR. PEURRUNG: So the two axes on10the figure that you're looking at, one is11comparing the velocity that the mixing system12is designed to, the maximum velocity, against13what we calculate is the velocity required to14pick a cloud of particles up off the bottom15and suspend them.16And so if that ratio the ratio17of those two velocities is greater than one or18less than one, that tells you whether you are19meeting or not meeting those criteria.20Likewise, the other access then21looks at inlet concentration compared to 20		Page 102
 variables you're talking about. DR. PEURRUNG: Correct. CHAIRMAN WINOKUR: And I see a solid suspension metric on the X axis, and what's that telling you in terms of the critical suspension velocity? DR. PEURRUNG: So the two axes on the figure that you're looking at, one is comparing the velocity that the mixing system is designed to, the maximum velocity, against what we calculate is the velocity required to pick a cloud of particles up off the bottom and suspend them. And so if that ratio the ratio of those two velocities is greater than one or less than one, that tells you whether you are meeting or not meeting those criteria. Likewise, the other access then looks at inlet concentration compared to 20 	1	at the figures here, and I can kind a see on
4DR. FEURRUNG: Correct.5CHAIRMAN WINOKUR: And I see a6solid suspension metric on the X axis, and7what's that telling you in terms of the8critical suspension velocity?9DR. PEURRUNG: So the two axes on10the figure that you're looking at, one is11comparing the velocity that the mixing system12is designed to, the maximum velocity, against13what we calculate is the velocity required to14pick a cloud of particles up off the bottom15and suspend them.16And so if that ratio the ratio17of those two velocities is greater than one or18less than one, that tells you whether you are19meeting or not meeting those criteria.20Likewise, the other access then21looks at inlet concentration compared to 20	2	the X and Y axis, these two different
5CHAIRMAN WINOKUR: And I see a6solid suspension metric on the X axis, and7what's that telling you in terms of the8critical suspension velocity?9DR. PEURRUNG: So the two axes on10the figure that you're looking at, one is11comparing the velocity that the mixing system12is designed to, the maximum velocity, against13what we calculate is the velocity required to14pick a cloud of particles up off the bottom15and suspend them.16And so if that ratio the ratio17of those two velocities is greater than one or18less than one, that tells you whether you are19Likewise, the other access then21looks at inlet concentration compared to 20	3	variables you're talking about.
 solid suspension metric on the X axis, and what's that telling you in terms of the critical suspension velocity? DR. PEURRUNG: So the two axes on the figure that you're looking at, one is comparing the velocity that the mixing system is designed to, the maximum velocity, against what we calculate is the velocity required to pick a cloud of particles up off the bottom and suspend them. And so if that ratio the ratio of those two velocities is greater than one or less than one, that tells you whether you are meeting or not meeting those criteria. Likewise, the other access then looks at inlet concentration compared to 20 	4	DR. PEURRUNG: Correct.
what's that telling you in terms of the critical suspension velocity? DR. PEURRUNG: So the two axes on the figure that you're looking at, one is comparing the velocity that the mixing system is designed to, the maximum velocity, against what we calculate is the velocity required to pick a cloud of particles up off the bottom and suspend them. And so if that ratio the ratio of those two velocities is greater than one or less than one, that tells you whether you are meeting or not meeting those criteria. Likewise, the other access then looks at inlet concentration compared to 20	5	CHAIRMAN WINOKUR: And I see a
8 critical suspension velocity? 9 DR. PEURRUNG: So the two axes on 10 the figure that you're looking at, one is 11 comparing the velocity that the mixing system 12 is designed to, the maximum velocity, against 13 what we calculate is the velocity required to 14 pick a cloud of particles up off the bottom 15 and suspend them. 16 And so if that ratio the ratio 17 of those two velocities is greater than one or 18 less than one, that tells you whether you are 19 meeting or not meeting those criteria. 20 Likewise, the other access then 21 looks at inlet concentration compared to 20	6	solid suspension metric on the X axis, and
9DR. PEURRUNG: So the two axes on10the figure that you're looking at, one is11comparing the velocity that the mixing system12is designed to, the maximum velocity, against13what we calculate is the velocity required to14pick a cloud of particles up off the bottom15and suspend them.16And so if that ratio the ratio17of those two velocities is greater than one or18less than one, that tells you whether you are19meeting or not meeting those criteria.20Likewise, the other access then21looks at inlet concentration compared to 20	7	what's that telling you in terms of the
 the figure that you're looking at, one is comparing the velocity that the mixing system is designed to, the maximum velocity, against what we calculate is the velocity required to pick a cloud of particles up off the bottom and suspend them. And so if that ratio the ratio of those two velocities is greater than one or less than one, that tells you whether you are meeting or not meeting those criteria. Likewise, the other access then looks at inlet concentration compared to 20 	8	critical suspension velocity?
11comparing the velocity that the mixing system12is designed to, the maximum velocity, against13what we calculate is the velocity required to14pick a cloud of particles up off the bottom15and suspend them.16And so if that ratio the ratio17of those two velocities is greater than one or18less than one, that tells you whether you are19meeting or not meeting those criteria.20Likewise, the other access then21looks at inlet concentration compared to 20	9	DR. PEURRUNG: So the two axes on
 is designed to, the maximum velocity, against what we calculate is the velocity required to pick a cloud of particles up off the bottom and suspend them. And so if that ratio the ratio of those two velocities is greater than one or less than one, that tells you whether you are meeting or not meeting those criteria. Likewise, the other access then looks at inlet concentration compared to 20 	10	the figure that you're looking at, one is
13 what we calculate is the velocity required to 14 pick a cloud of particles up off the bottom 15 and suspend them. 16 And so if that ratio the ratio 17 of those two velocities is greater than one or 18 less than one, that tells you whether you are 19 meeting or not meeting those criteria. 20 Likewise, the other access then 21 looks at inlet concentration compared to 20	11	comparing the velocity that the mixing system
14 pick a cloud of particles up off the bottom 15 and suspend them. 16 And so if that ratio the ratio 17 of those two velocities is greater than one or 18 less than one, that tells you whether you are 19 meeting or not meeting those criteria. 20 Likewise, the other access then 21 looks at inlet concentration compared to 20	12	is designed to, the maximum velocity, against
15 and suspend them. 16 And so if that ratio the ratio 17 of those two velocities is greater than one or 18 less than one, that tells you whether you are 19 meeting or not meeting those criteria. 20 Likewise, the other access then 21 looks at inlet concentration compared to 20	13	what we calculate is the velocity required to
And so if that ratio the ratio of those two velocities is greater than one or less than one, that tells you whether you are meeting or not meeting those criteria. Likewise, the other access then looks at inlet concentration compared to 20	14	pick a cloud of particles up off the bottom
17 of those two velocities is greater than one or 18 less than one, that tells you whether you are 19 meeting or not meeting those criteria. 20 Likewise, the other access then 21 looks at inlet concentration compared to 20	15	and suspend them.
18 less than one, that tells you whether you are 19 meeting or not meeting those criteria. 20 Likewise, the other access then 21 looks at inlet concentration compared to 20	16	And so if that ratio the ratio
19 meeting or not meeting those criteria. 20 Likewise, the other access then 21 looks at inlet concentration compared to 20	17	of those two velocities is greater than one or
20 Likewise, the other access then 21 looks at inlet concentration compared to 20	18	less than one, that tells you whether you are
21 looks at inlet concentration compared to 20	19	meeting or not meeting those criteria.
	20	Likewise, the other access then
22 percent.	21	looks at inlet concentration compared to 20
	22	percent.

Page 103

1CHAIRMAN WINOKUR: All right. So2we have many vessels here where, for the solid3suspension metric, were less than one. Let's4take a vessel like FRP 2 which is theI guess5it's the receipt tank for low activity waste.6It's got a value of about .3. So what does7that mean in terms of the critical suspension8velocity?9DR. PEURRUNG: In both of these10cases, you're looking forone is your, just11your "break even" point. Okay. If it's12greater than one, then you're doing well. If13it's less than one, then you're failing to15meet the criteria.16So you've only got 30 percent of17the velocity that you need in your mixing18system design, if your criterion is .3, that19is required, actually, to suspend the20CHAIRMAN WINOKUR: So what that21CHAIRMAN WINOKUR: So what that		Pa
 suspension metric, were less than one. Let's take a vessel like FRP 2 which is theI guess it's the receipt tank for low activity waste. It's got a value of about .3. So what does that mean in terms of the critical suspension velocity? DR. PEURRUNG: In both of these cases, you're looking forone is your, just your "break even" point. Okay. If it's greater than one, then you're doing well. If it's at one, then we deem that to be marginal. If it's less than one, then you're failing to meet the criteria. So you've only got 30 percent of the velocity that you need in your mixing system design, if your criterion is .3, that is required, actually, to suspend the material. CHAIRMAN WINOKUR: So what that 	1	CHAIRMAN WINOKUR: All right. So
4take a vessel like FRP 2 which is theI guess5it's the receipt tank for low activity waste.6It's got a value of about .3. So what does7that mean in terms of the critical suspension8velocity?9DR. PEURRUNG: In both of these10cases, you're looking forone is your, just11your "break even" point. Okay. If it's12greater than one, then you're doing well. If13it's at one, then we deem that to be marginal.14If it's less than one, then you're failing to15meet the criteria.16So you've only got 30 percent of17the velocity that you need in your mixing18system design, if your criterion is .3, that19is required, actually, to suspend the20material.21CHAIRMAN WINOKUR: So what that	2	we have many vessels here where, for the solid
 it's the receipt tank for low activity waste. It's got a value of about .3. So what does that mean in terms of the critical suspension velocity? DR. PEURRUNG: In both of these cases, you're looking forone is your, just your "break even" point. Okay. If it's greater than one, then you're doing well. If it's at one, then we deem that to be marginal. If it's less than one, then you're failing to meet the criteria. So you've only got 30 percent of the velocity that you need in your mixing system design, if your criterion is .3, that is required, actually, to suspend the material. 	3	suspension metric, were less than one. Let's
6 It's got a value of about .3. So what does 7 that mean in terms of the critical suspension 8 velocity? 9 DR. PEURRUNG: In both of these 10 cases, you're looking forone is your, just 11 your "break even" point. Okay. If it's 12 greater than one, then you're doing well. If 13 it's at one, then we deem that to be marginal. 14 If it's less than one, then you're failing to 15 meet the criteria. 16 So you've only got 30 percent of 17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that	4	take a vessel like FRP 2 which is theI guess
that mean in terms of the critical suspension velocity? DR. PEURRUNG: In both of these cases, you're looking forone is your, just your "break even" point. Okay. If it's greater than one, then you're doing well. If it's at one, then we deem that to be marginal. If it's less than one, then you're failing to meet the criteria. So you've only got 30 percent of the velocity that you need in your mixing system design, if your criterion is .3, that is required, actually, to suspend the material. CHAIRMAN WINOKUR: So what that	5	it's the receipt tank for low activity waste.
 8 velocity? 9 DR. PEURRUNG: In both of these cases, you're looking forone is your, just your "break even" point. Okay. If it's greater than one, then you're doing well. If it's at one, then we deem that to be marginal. If it's less than one, then you're failing to meet the criteria. 16 So you've only got 30 percent of the velocity that you need in your mixing system design, if your criterion is .3, that is required, actually, to suspend the material. 21 CHAIRMAN WINOKUR: So what that 	6	It's got a value of about .3. So what does
9 DR. PEURRUNG: In both of these 10 cases, you're looking forone is your, just 11 your "break even" point. Okay. If it's 12 greater than one, then you're doing well. If 13 it's at one, then we deem that to be marginal. 14 If it's less than one, then you're failing to 15 meet the criteria. 16 So you've only got 30 percent of 17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that	7	that mean in terms of the critical suspension
<pre>10 cases, you're looking forone is your, just 11 your "break even" point. Okay. If it's 12 greater than one, then you're doing well. If 13 it's at one, then we deem that to be marginal. 14 If it's less than one, then you're failing to 15 meet the criteria. 16 So you've only got 30 percent of 17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 10 material. 21 CHAIRMAN WINOKUR: So what that</pre>	8	velocity?
11 your "break even" point. Okay. If it's 12 greater than one, then you're doing well. If 13 it's at one, then we deem that to be marginal. 14 If it's less than one, then you're failing to 15 meet the criteria. 16 So you've only got 30 percent of 17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that	9	DR. PEURRUNG: In both of these
12 greater than one, then you're doing well. If 13 it's at one, then we deem that to be marginal. 14 If it's less than one, then you're failing to 15 meet the criteria. 16 So you've only got 30 percent of 17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 10 material. 21 CHAIRMAN WINOKUR: So what that	10	cases, you're looking forone is your, just
13 it's at one, then we deem that to be marginal. 14 If it's less than one, then you're failing to 15 meet the criteria. 16 So you've only got 30 percent of 17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that	11	your "break even" point. Okay. If it's
14 If it's less than one, then you're failing to 15 meet the criteria. 16 So you've only got 30 percent of 17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that	12	greater than one, then you're doing well. If
15 meet the criteria. 16 So you've only got 30 percent of 17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that	13	it's at one, then we deem that to be marginal.
16So you've only got 30 percent of17the velocity that you need in your mixing18system design, if your criterion is .3, that19is required, actually, to suspend the20material.21CHAIRMAN WINOKUR: So what that	14	If it's less than one, then you're failing to
17 the velocity that you need in your mixing 18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that	15	meet the criteria.
<pre>18 system design, if your criterion is .3, that 19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that</pre>	16	So you've only got 30 percent of
<pre>19 is required, actually, to suspend the 20 material. 21 CHAIRMAN WINOKUR: So what that</pre>	17	the velocity that you need in your mixing
20 material. 21 CHAIRMAN WINOKUR: So what that	18	system design, if your criterion is .3, that
21 CHAIRMAN WINOKUR: So what that	19	is required, actually, to suspend the
	20	material.
22 says is that if you needed, if you had a tank	21	CHAIRMAN WINOKUR: So what that
	22	says is that if you needed, if you had a tank

Deere	1	0	Λ
Page	_ T	υ	4

and you had 12 meters per second, which is the maximum speed you could try that, that if it was .3, you'd need 36 meters per second or jet velocity to get to the critical suspension velocity?

6 DR. PEURRUNG: Again, against the, 7 the vessel, I should caveat this by saying we 8 had a design at the time, this was more than 9 a year ago, we had operating conditions at the time and waste characteristics at the time. 10 11 But yes, when we presented that information it 12 was against a certain set of assumptions about 13 how those mixing systems would be designed and 14 operated. But essentially, your conclusion is 15 correct.

16 CHAIRMAN WINOKUR: And in many of 17 the cases where these numbers are less than 18 one, there'd be no way in these vessels to get 19 these kinds of velocities. I mean, there are 20 limitations in terms of what the vessels can 21 actually do.

22

DR. PEURRUNG: We're aware that

	Page 105
1	there are some challenges in redesigning the
2	vessel mixing systems, yes. That is not our
3	particular area of expertise, to determine how
4	to change those designs.
5	CHAIRMAN WINOKUR: Oh, I
6	understand that, but I'm just trying to get an
7	idea of what some of those numbers mean.
8	Now on the Y axis, we're looking
9	at this solids concentration. So let's say
10	you have a number like .1 which you have on
11	some of these graphs. What does that mean?
12	DR. PEURRUNG: In that case, then
13	you'd be saying that the solids concentration
14	at the bottom is greatly exceeding this 20
15	percent mixing criteria that we had at pump
16	inlet. That is, essentially all the solids
17	have fallen to the bottom of the tank and the
18	concentrations there are much too high.
19	Again, the one would be the value
20	of, okay, it's at 20 percent. Numbers less
21	than one tell you that your solids
22	concentrations are higher than that.

Page 106 CHAIRMAN WINOKUR: And so what we 1 2 have here, at least in the spring of 2009, 3 based on your testing, is we have many 4 vessels, very important vessels like HLP 22 5 [High-level Waste Lag storage and Feed 6 Blending Process System], which is the feed 7 receipt vessel for high-level waste. We have ultra filtration vessels. We have low 8 activity waste vessels. We have overflow 9 vessels. 10 I actually have a cheat sheet here 11 12 that would tell me what they are. But many of them are in this lower 13 14 quadrant where the number is less than one for both of these metrics. 15 16 DR. PEURRUNG: Correct. 17 CHAIRMAN WINOKUR: And based upon 18 that, you actually have a table, and based on 19 that table, you characterize whether vessels 20 are adequate or inadequate. 21 DR. PEURRUNG: Correct. Against the 22 design, the waste characteristics and the

Page 107 operating conditions at the time. 1 2 CHAIRMAN WINOKUR: Absolutely. 3 Absolutely. And of course these vessels, many 4 of them, I think you say in your report, are 5 simply inadequate at that time. 6 DR. PEURRUNG: Correct. The numbers 7 that we gave were that four appeared to be 8 adequate, two appeared to be marginal, and seven appeared to be inadequate, according to 9 our scale tests. 10 11 CHAIRMAN WINOKUR: And you actually 12 say, and I think you've said some of it, that 13 you understand that changes have been made to 14 these vessels, right? 15 DR. PEURRUNG: Correct. 16 CHAIRMAN WINOKUR: But you do write in your response to the Board, you say in some 17 18 cases they increased the number of pulse tubes 19 and/or nozzle diameters. 20 You also say operating conditions 21 have been changed, such as reducing solids 22 concentrations.

	Page 108
1	DR. PEURRUNG: Correct. Or perhaps
2	fill height.
3	CHAIRMAN WINOKUR: All right. So
4	changing solids concentrations would mean that
5	these vessels aren't being required to mix as
6	large a percentage of waste solids as they had
7	before?
8	DR. PEURRUNG: Correct.
9	CHAIRMAN WINOKUR: Okay.
10	And as a result, you write, nine of
11	the vessel types originally evaluated as
12	marginal or inadequate, four of the designs or
13	operating conditions for the vessels have been
14	improved since PNNL completed Phase I testing.
15	You're saying "approved" but you're not saying
16	that you think they adequately or robustly
17	mix. True?
18	DR. PEURRUNG: I think our analyses
19	show that we've moved some of them that were
20	marginalthat were inadequate are now
21	essentially marginal.
22	CHAIRMAN WINOKUR: Marginal. And

	Page 109
1	then you write: However, there are still
2	deficiencies with the technical basis for both
3	Newtonian and non-Newtonian vessels.
4	DR. PEURRUNG: Correct.
5	CHAIRMAN WINOKUR: Okay. So this is
6	where you stood at the end of Phase I testing
7	for the project.
8	Excuse me. I'll ask the questions.
9	Thank you.
10	And then we move on to Phase II
11	testing, and I'm going to come right to you,
12	Greg, so you'll have your chance to speak.
13	And we start doing Phase II testing
14	at Washington State University; right?
15	MR. ASHLEY: Correct. And at MCE.
16	CHAIRMAN WINOKUR: I don't think
17	they're on. That's on.
18	(Microphone adjustment.)
19	CHAIRMAN WINOKUR: Yes. All right.
20	So I wanted to talk about the fact that the
21	projectso PNNL's involvement with the
22	project ends, and then the contractoryou are

		Page
1	going to start to do some experiments.	
2	MR. ASHLEY: Correct.	
3	CHAIRMAN WINOKUR: You're going to	
4	do full-scale and small-scale experiments, and	
5	you start out I think doing some experiments	
6	at Washington State University. Can you	
7	describe those experiments.	
8	MR. ASHLEY: The experiments at	
9	Washington State University were looking at	
10	radial jets. They werethe primary purposes	
11	of those experiments was to measure zones of	
12	influence, and if you think about the zone of	
13	influence that as a jet impinges on the bottom	
14	of the vessel, what is the effect, what is the	
15	radius of the effect that that jet has on the	
16	bottom of the vessel.	
17	CHAIRMAN WINOKUR: Right. And so	
18	what's happening here is that you're kind a	
19	beginning to use this bottom clearing, or the	
20	zone of influence as a metric to give you a	
21	sense of how well you're mixing.	
22	MR. ASHLEY: I think it is important	

110

to talk about--there's been a lot of 1 2 discussion about, you know, suspension of 3 particles and bottom clearing, and it's 4 important to note that there are different 5 effects. That the behavior in these vessels 6 is complex. Okay. At the time that we were 7 dealing the experiments at PNNL, we were 8 learning. We were learning a lot about how 9 the PJMs work. 10 We have the luxury, of we do get a 11 lot of expert consulting advice and opinions, 12 and they're not always in agreement, as you 13 might imagine; but we did begin to learn that 14 there are different phenomena that are of 15 interest in terms of the performance of the 16 PJMs. Different phenomena associated with our 17 ability to pump solids out of the vessel. 18 CHAIRMAN WINOKUR: Right. 19 MR. ASHLEY: Different phenomena 20 that are associated, if we have settled 21 solids, how are we mobilizing those solids to 22 release gas, which is one of our safety

Page 111

	P	age
1	criteria.	
2	The purpose of the experiments with	
3	radial jets was really to understand how	
4	effective those jets are in terms of	
5	mobilizing solids on the bottom of the vessel.	
6	CHAIRMAN WINOKUR: Right. And based	
7	on this work, I think you determined the	
8	scaling factor of 0.18, which has been	
9	mentioned before, and this was derived from a	
10	PRA [Probabilistic Risk Analysis] model. Can	
11	you talk a little bit about that.	
12	MR. ASHLEY: Okay. That model is,	
13	isthe model is available, it was originally	
14	based on air jets. That model was the basis	
15	for establishing what those radial zones of	
16	influence may be. Obviously, we have fluid	
17	jets, you know, the settled solids, so there	
18	are correlations, and we need to verify the	
19	use of the PRA correlations in terms of	
20	predicting what those zones of influence might	
21	be, which is one of the reasons for doing	
22	those experiments at various scales, including	

Page 113 full-scale experiments up at WSU [Washington 1 2 State University]. 3 CHAIRMAN WINOKUR: Now I don't know 4 if we covered it before, but you're finding a 5 scaling factor for jet velocity's at .18, and 6 I think the folks at PNNL had one, .33; right? 7 MR. ASHLEY: This is where we need 8 to really be clear; okay. 9 CHAIRMAN WINOKUR: I haven't even 10 asked the question yet. MR. ASHLEY: Well, .33 for solids 11 12 accumulation is what has been used, okay, in determining whether solids accumulate on the 13 14 vessel. The velocities were scaled using .33. For determining whether we're able to get 15 16 bottom motion, the scaling, as Dr. Dickey 17 explained, the scaling coefficient that was used was .18. 18 19 This is for movement of solids on 20 the bottom of the vessel. .33, though, was 21 used to determine scaling the jets for solids 22 accumulation.

Page 114

	I
1	CHAIRMAN WINOKUR: So Dr. Dickey,
2	you believe that, I mean that for these
3	bottom-clearing experiments, you believe that
4	the appropriate scaling factor for jet
5	velocity is .18?
6	DR. DICKEY: Basically, what it
7	comes down to is you're dealing with a
8	different phenomena. All you're trying to do
9	is mobilize the solids. You're not trying to
10	get them off the bottom. You just simply want
11	to be able to erode the settled bed away, and
12	erosion tends to be almost an equal velocity
13	characteristic, as opposed to being one where
14	you have to change the velocity in going from
15	the small to large scale.
16	If I may, let me make one other
17	point of clarification here, because to some
18	degree, it is my responsibility. We came at
19	this with the idea of this off-bottom
20	suspension criteria. It is truly much more of
21	an academic criteria than an industrial
22	criteria. I'll explain in a moment.

Page 115 What it is, it's a very clearly 1 2 observable phenomena in solid suspension. You 3 can tell when you get everything off the 4 bottom. From an industrial perspective, the 5 company that I worked for, for a long time, 6 had a one to ten scale for mixing 7 characterization, one being the minimum 8 acceptable, ten being the maximum practical. 9 Off-bottom suspension, on the scale 10 of one to ten, was a three. There were plenty of consistent conditions that were widely 11 used, industrially, that did not meet the off-12 bottom criteria, and that's basically the 13 14 methodology and the direction that it was headed in terms of this on-bottom motion 15 16 criteria. 17 CHAIRMAN WINOKUR: So you're comfortable with a .18 scaling factor for that 18 19 phenomena? 20 DR. DICKEY: To get the part--No. 21 in order to scale up for particle suspension, 22 you need to use a one-third exponent. The

Page 116 only place that you're using the .2, .18 1 2 exponent, is when you're looking at a yield stress material settled on the bottom 3 4 equivalent to a DBE [Design Basis Event] 5 situation, and what you're doing is you're 6 looking at just getting the particles to erode 7 away, and move enough, that you can release 8 hydrogen. It's a completely different 9 problem, a completely different phenomena, and the scale of approach was taken as being a 10 different approach, much more like trying to 11 12 move a non-Newtonian material. I think we can 13 CHAIRMAN WINOKUR: 14 agree, and tell me if I'm wrong here, Dr. Peurrung, that using off-bottom suspension is 15 16 certainly a much more challenging and rigorous criteria than using bottom clearing. 17 18 DR. PEURRUNG: Clearly. 19 CHAIRMAN WINOKUR: But what I 20 understand you saying, Dr. Dickey, is you believe that a value of .18 for bottom 21 22 clearing for zone of influence experiments

Page 117 would have been appropriate. 1 2 DR. DICKEY: Yes, I quess if I believed that the zone of influence was all 3 4 that was important for solid--5 CHAIRMAN WINOKUR: I understand. We 6 haven't gotten to that yet. But okay. So 7 here we have, Dr. Dickey, a situation where 8 we're using, in these experiments--at 9 Washington State University we're going to use zone of influence bottom clearing with .18 10 11 scaling, and we're going to be using the .18 12 factor. Okay? And do you sense that's going 13 to give you a good measure of whether these 14 vessels are going to be able to mix appropriately and perform their function? 15 16 DR. DICKEY: No. I don't think 17 it'll mix appropriately. CHAIRMAN WINOKUR: 18 Okay. Now I want 19 to go back, and I want to get you in a second, 20 Dr. Kosson. I want to go back to you about 21 this .18 value. How did you determinate the 22 .18 value from that data set? How was that

	Page 118
1	done?
2	MR. ASHLEY: Well, the .18 value was
3	determined, obviously, in consultation with
4	our consultants, and also review of the
5	literature, and, you know, one of the purposes
6	of running multiscaled experiments at WSU was,
7	once again, to confirm what the value should
8	be. If you look at the jets that were run at
9	WSU, a full-scale jet was run. It's a flume
10	test, so it was just simpler to run a full-
11	scale single jet test.
12	Now, once again, the purpose of that
13	test, of those tests, were to confirm what
14	coefficient should be conservatively used for
15	simply the zones of influence, which would be
16	used to evaluate bottom clearing and not
17	suspension.
18	CHAIRMAN WINOKUR: Okay. let me ask
19	you, Dr. Kosson, have you looked at the data
20	from the zone of influence studies that were
21	performed? And can you comment on whether or
22	not, from that data, you could derive this

1 scaling factor of .18?

2	DR. KOSSON: Yes, we have looked at
3	the zone of influence studies that have been
4	performed, and I think it's important to
5	recognize that there are several different
6	functions of the mixing that are being
7	confounded in this discussion, potentially.
8	One of the zone of influence functions is in
9	order to disrupt the bed to liberate hydrogen
10	that may have accumulated in it during a
11	design basis event. A second factor of the
12	zone of influence is dealing with the bottom
13	clearing, or resuspension effects that are
14	necessary for making sure that solids do not
15	accumulate in the vessel where they are.
16	CHAIRMAN WINOKUR: Right.
17	DR. KOSSON: Another function of the
18	mixing is to provide a understood mixture that
19	you're passing to the next vessel as part of
20	your downstream processing, or to your next
21	stage of processing.
22	CHAIRMAN WINOKUR: Right.

Neal R. Gross & Co., Inc. 202-234-4433 Page 119

Page 120 Each one of those can 1 DR. KOSSON: 2 have very different requirements. The zone of influence testing for the design basis event 3 4 focuses on you now have a potential for a more 5 completely settled, or a greater percentage of 6 the bed settled due to the design basis event 7 than you would have under normal operating 8 strategy. So at that point, your goal is to 9 disrupt that bed to liberate any hydrogen that 10 11 may have accumulated in pockets, so that you 12 don't end up with a safety hazard, because the inability for hydrogen to be adequately 13 14 cleared from the vessel. 15 Under that condition, you can have, 16 in some of the vessels, depending on the 17 specified weight percent, a considerable amount of settled solids, up to several feet 18 19 of settled solids on the bed is potentially an 20 option. 21 And the testing that was done under 22 zone of influence testing was--at full scale,

Page 121 was done with a limited particle size distribution, particle type, and only a limited solid depth settling. So the zone of influence transfer, or scaling, and the ability to scale that to the full vessel, was one of the issues that we questioned. For the off-bottom suspension, or the zone of influence that's looked at there, the issue is twofold. One is to be able to remove the particles from the vessel, so that you don't have accumulation in the vessel. The conditions under the MCE testing, what they call Phase II prototypic testing, demonstrated at that scale, that that could be carried out for the vessels as they went through their design process and the experimental data gathering. When you take that information, though, and recognize the complex geometry of the vessel, and the fact that there are different phenomena involved, some which scale		
2distribution, particle type, and only a3limited solid depth settling.4So the zone of influence transfer,5or scaling, and the ability to scale that to6the full vessel, was one of the issues that we7guestioned.8For the off-bottom suspension, or9the zone of influence that's looked at there,10the issue is twofold. One is to be able to11remove the particles from the vessel, so that12you don't have accumulation in the vessel.13The conditions under the MCE14testing, what they call Phase II prototypic15testing, demonstrated at that scale, that that16could be carried out for the vessels as they17went through their design process and the18experimental data gathering.19When you take that information,20though, and recognize the complex geometry of21the vessel, and the fact that there are		Page 121
3limited solid depth settling.4So the zone of influence transfer,5or scaling, and the ability to scale that to6the full vessel, was one of the issues that we7questioned.8For the off-bottom suspension, or9the zone of influence that's looked at there,10the issue is twofold. One is to be able to11remove the particles from the vessel, so that12you don't have accumulation in the vessel.13The conditions under the MCE14testing, what they call Phase II prototypic15testing, demonstrated at that scale, that that16could be carried out for the vessels as they17went through their design process and the18experimental data gathering.19When you take that information,20though, and recognize the complex geometry of21the vessel, and the fact that there are	1	was done with a limited particle size
4So the zone of influence transfer,5or scaling, and the ability to scale that to6the full vessel, was one of the issues that we7questioned.8For the off-bottom suspension, or9the zone of influence that's looked at there,10the issue is twofold. One is to be able to11remove the particles from the vessel, so that12you don't have accumulation in the vessel.13The conditions under the MCE14testing, what they call Phase II prototypic15testing, demonstrated at that scale, that that16could be carried out for the vessels as they17went through their design process and the18experimental data gathering.19When you take that information,20the ussel, and the fact that there are	2	distribution, particle type, and only a
5or scaling, and the ability to scale that to the full vessel, was one of the issues that we questioned.8For the off-bottom suspension, or9the zone of influence that's looked at there, the issue is twofold. One is to be able to remove the particles from the vessel, so that you don't have accumulation in the vessel.13The conditions under the MCE14testing, what they call Phase II prototypic testing, demonstrated at that scale, that that could be carried out for the vessels as they went through their design process and the experimental data gathering.19When you take that information, though, and recognize the complex geometry of the vessel, and the fact that there are	3	limited solid depth settling.
 6 the full vessel, was one of the issues that we questioned. 8 For the off-bottom suspension, or 9 the zone of influence that's looked at there, 10 the issue is twofold. One is to be able to 11 remove the particles from the vessel, so that 12 you don't have accumulation in the vessel. 13 The conditions under the MCE 14 testing, what they call Phase II prototypic 15 testing, demonstrated at that scale, that that 16 could be carried out for the vessels as they 17 went through their design process and the 18 experimental data gathering. 19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are 	4	So the zone of influence transfer,
7questioned.8For the off-bottom suspension, or9the zone of influence that's looked at there,10the issue is twofold. One is to be able to11remove the particles from the vessel, so that12you don't have accumulation in the vessel.13The conditions under the MCE14testing, what they call Phase II prototypic15testing, demonstrated at that scale, that that16could be carried out for the vessels as they17went through their design process and the18experimental data gathering.19When you take that information,20though, and recognize the complex geometry of21the vessel, and the fact that there are	5	or scaling, and the ability to scale that to
 For the off-bottom suspension, or the zone of influence that's looked at there, the issue is twofold. One is to be able to remove the particles from the vessel, so that you don't have accumulation in the vessel. The conditions under the MCE testing, what they call Phase II prototypic testing, demonstrated at that scale, that that could be carried out for the vessels as they went through their design process and the experimental data gathering. When you take that information, though, and recognize the complex geometry of the vessel, and the fact that there are 	6	the full vessel, was one of the issues that we
 9 the zone of influence that's looked at there, 10 the issue is twofold. One is to be able to 11 remove the particles from the vessel, so that 12 you don't have accumulation in the vessel. 13 The conditions under the MCE 14 testing, what they call Phase II prototypic 15 testing, demonstrated at that scale, that that 16 could be carried out for the vessels as they 17 went through their design process and the 18 experimental data gathering. 19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are 	7	questioned.
 the issue is twofold. One is to be able to remove the particles from the vessel, so that you don't have accumulation in the vessel. The conditions under the MCE testing, what they call Phase II prototypic testing, demonstrated at that scale, that that could be carried out for the vessels as they went through their design process and the experimental data gathering. When you take that information, though, and recognize the complex geometry of the vessel, and the fact that there are 	8	For the off-bottom suspension, or
11 remove the particles from the vessel, so that 12 you don't have accumulation in the vessel. 13 The conditions under the MCE 14 testing, what they call Phase II prototypic 15 testing, demonstrated at that scale, that that 16 could be carried out for the vessels as they 17 went through their design process and the 18 experimental data gathering. 19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are	9	the zone of influence that's looked at there,
 you don't have accumulation in the vessel. The conditions under the MCE testing, what they call Phase II prototypic testing, demonstrated at that scale, that that could be carried out for the vessels as they went through their design process and the experimental data gathering. When you take that information, though, and recognize the complex geometry of the vessel, and the fact that there are 	10	the issue is twofold. One is to be able to
13The conditions under the MCE14testing, what they call Phase II prototypic15testing, demonstrated at that scale, that that16could be carried out for the vessels as they17went through their design process and the18experimental data gathering.19When you take that information,20though, and recognize the complex geometry of21the vessel, and the fact that there are	11	remove the particles from the vessel, so that
14 testing, what they call Phase II prototypic 15 testing, demonstrated at that scale, that that 16 could be carried out for the vessels as they 17 went through their design process and the 18 experimental data gathering. 19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are	12	you don't have accumulation in the vessel.
15 testing, demonstrated at that scale, that that 16 could be carried out for the vessels as they 17 went through their design process and the 18 experimental data gathering. 19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are	13	The conditions under the MCE
16 could be carried out for the vessels as they 17 went through their design process and the 18 experimental data gathering. 19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are	14	testing, what they call Phase II prototypic
17 went through their design process and the 18 experimental data gathering. 19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are	15	testing, demonstrated at that scale, that that
18 experimental data gathering. 19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are	16	could be carried out for the vessels as they
19 When you take that information, 20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are	17	went through their design process and the
20 though, and recognize the complex geometry of 21 the vessel, and the fact that there are	18	experimental data gathering.
21 the vessel, and the fact that there are	19	When you take that information,
	20	though, and recognize the complex geometry of
22 different phenomena involved, some which scale	21	the vessel, and the fact that there are
	22	different phenomena involved, some which scale

reasonably, some which don't scale at all 1 2 reasonably, that when you integrate it all 3 together, that's why we thought it was very 4 important that large-scale testing be carried 5 out to validate the scaling basis for that Some of it's the suction height and 6 clearing. 7 the like. 8 For the third function of passing 9 downstream what you are processing, and 10 providing feed to the next stage of 11 processing, what is required there depends 12 very largely on your process control logic,

13 which had not been well-established at the 14 time that we were going through the review 15 that we had.

What was established was that as you do the clearing from the vessels, that there's bottom-clearing results that they can clear the bottom at that scale, and that also the faster settling particles will be transferred downstream, disproportionately, early on in the process, the clearing vessel.

> Neal R. Gross & Co., Inc. 202-234-4433

Page 122

Page 123

]
1	CHAIRMAN WINOKUR: Let me ask you,
2	Greg, At MCE, when you did these tests, and
3	these were small vessel tests, did they
4	attempt to look at off-bottom suspension?
5	MR. ASHLEY: Yes. The cloud height
6	was measured, similar to the PNNL tests that
7	were done in the Phase I. That was one of the
8	measurements. So as Dr. Dickey said, that is
9	a classic visual measurement associated with
10	mixing, with various scales established based
11	on how high the cloud heights. So we did
12	measure the cloud height as we did the
13	testing.
14	CHAIRMAN WINOKUR: And did you find
15	that the jet velocities necessary to do that
16	were greater or less than what the folks at
17	PNNL measured?
18	MR. ASHLEY: We actually found that
19	the velocities required were higher, okay,
20	which also drove us to the need to improve the
21	performance of certain vessels.
22	I think as was mentioned, we are

	Page 124
1	doing substantial modifications to some of our
2	high solids vessels. You mentioned the HLP 22
3	vessel, which is the primary feed receipt
4	level for the high-level waste.
5	If you can just simplistically look
6	at that, we're increasing the power in that
7	vessel by 50 percent. We're going from 12
8	PJMs, 12 pulse tubes, to 18 pulse tubes. The
9	velocity in that vessel is the 12 meter per
10	second velocity at full scale.
11	So our finding was to assure that we
12	don't retain solids in that vessel, that we
13	required adding that additional power to that
14	vessel.
15	CHAIRMAN WINOKUR: My understanding
16	was that to get off-bottom suspension, the jet
17	velocities were actually higher than the ones
18	that PNNL measured.
19	MR. ASHLEY: The correlations have
20	been reconciled, and I believe, I'm not
21	absolutely sure, but PNNL is reviewing, or has
22	reviewed the reconciliations.

Page 125 Once again, there is a difference 1 2 in, you know, the MCE facility was a 3 prototypic facility, the pulse jet operation 4 was prototypic, whereas the Phase I testing at 5 PNNL was not fully prototypic. So there was 6 an exercise to reconcile the differences in 7 that correlation. 8 CHAIRMAN WINOKUR: What I'm trying 9 to get a measure of is that--and I have to ask 10 the experts again. From what I've read and 11 understood, you need to have off-bottom 12 suspension if you want to have, I mean, 13 adequate mixing, and convince yourselves 14 you're not going to get solids accumulations in the bottoms of vessels. 15 16 Dr. Peurrung, do you think that's a reasonable conclusion? 17 18 DR. PEURRUNG: I'm sorry. Could you 19 say the question again. 20 CHAIRMAN WINOKUR: The question is 21 do you need off-bottom suspension? Is that 22 what you really need to measure if you can

Page 126 adequately mix this varied waste in these 1 2 vessels? 3 DR. PEURRUNG: That was the 4 criterion that we selected at the time, and we 5 believe that that is an appropriately 6 conservative criterion. 7 CHAIRMAN WINOKUR: Right. 8 And Dr. Dickey, would you agree with 9 that? 10 DR. DICKEY: I'm going to introduce 11 one other quirk in this whole thing. The one other factor that's involved with this is the 12 13 fact that these are basically batch vessels, 14 and as a result, yes, the suspension is purely on bottom motion when they are full vessels. 15 16 All of the PNNL studies were basically done 17 with full vessels. What ends up happening is 18 when you get down past about half full, where 19 you're down half or quarter full, these 20 vessels do have off-bottom suspension. 21 You don't have as much to mix, you 22 have better access to them, and they actually

	Page 127
1	get to that point. Again, it's one of these
2	things, when you look at the whole process and
3	try to assess how this is going to really
4	operate, I don't think we're cheating here.
5	I think we're going at this on a very
б	practical scale, of using fairly conservative
7	scale down, scale up criteria, of looking at
8	all the aspects of what's going on, of
9	focusing basically on the question that was
10	asked at the beginning. Will this accumulate
11	material? And I don't think it will.
12	CHAIRMAN WINOKUR: So you think,
13	from what you know, these vessels will
14	adequately mix?
15	DR. DICKEY: Yes, provided, you
16	know, something, other upset in the plant
17	doesn't occur, and I guess I'll toss in the
18	one other caveat here, is that there are
19	things that we have learned out of this that
20	would cause efforts to go back, and I think
21	PNNL raised the question about pumping and
22	transfer. We now have experimental data that

		Page
1	tells us, if you put 5 percent into the tank,	
2	what's the concentration going to be,	
3	momentarily during a pulse, on an average	
4	during the first quarter pump-out? The data's	
5	there. We need to close the loop and make	
6	sure that it's being used properly, and being	
7	applied in the places it needs to be applied.	
8	The test results are very, very	
9	worthwhile, and very, very useful in terms of	
10	not only they demonstrated the ability to mix,	
11	or at least transfer, and they give us some	
12	kind of an idea of what we actually have to	
13	measure and observe.	
14	CHAIRMAN WINOKUR: I think we're	
15	going to have to finish up at some time, but	
16	I wanted to just get one more thing in place.	
17	You also did some pump-out tests too; right?	
18	MR. ASHLEY: That's correct. In	
19	fact, when we talk aboutyou know, the off-	
20	bottom suspension is an observable criteria.	
21	A real criteria is no solids accumulation.	
22	Pump-out is a measurable criteria, and that's	

128

Page 129

1	why, as we went from the Phase I testing at
2	PNNL, we relooked at that timein fact, our
3	criteria for solids accumulation was what we
4	called a de minimus criteria. Okay. You
5	know, some can say, well, what is de minimus?
6	We changed. Our criteria is currently a no
7	accumulation criteria.
8	We went to a pump-out because that
9	is a measurable criteria. In fact, as Dr.
10	Dickey said, what happens is the phenomena
11	does change as the vessel level decreases.
12	Jet velocities increase as vessel level
13	decreases. It's a function of the fluidics,
14	or the pulse jet technology.
15	So we felt that the pump-out was a
16	true measurable criteria, where we would look
17	at the distribution of solids remaining in the
18	vessel, look at the distribution of solids
19	that came out in the first quarter batch, that
20	came out in the first half batch, that came
21	out in the three-quarter batch, and then look
22	at the remaining distribution of solids left

Page 130 in the heel. 1 2 Typically, during normal operation 3 we won't bring these vessels all the way down to an empty status. They'll be brought down 4 5 to roughly a quarter batch status. 6 So that was a measurable criteria, 7 where we could look at what are the 8 constituents in the portion of the batch 9 pumped out, and what are the remaining constituents as we draw the vessel down, all 10 the way, to what would be the low level during 11 12 operation. 13 That was a more positive 14 quantitative criteria, rather than an 15 observation that particles were moving, 16 they're off the bottom. Those are 17 observations. This was quantitative criteria 18 for acceptance. 19 CHAIRMAN WINOKUR: Now when you did 20 this pump-down test, when you did the pump-21 down test, you did not have off-bottom 22 suspension; correct?

	Page 131
1	MR. ASHLEY: No. The pump-down test
2	we had, the pump
3	CHAIRMAN WINOKUR: You were using
4	the scaling factor of 0.33. Was that true?
5	MR. ASHLEY: That's correct.
6	CHAIRMAN WINOKUR: And for those jet
7	velocities, did you have off-bottom suspension
8	during the testing?
9	MR. ASHLEY: There's off-bottom
10	suspension. Our suction lines are off the
11	bottom of the vessel. Okay. They don't come-
12	-suction lines are not out of the bottom of
13	the vessels. Some of them are as low as three
14	inches off the bottom of the vessel.
15	For a participle to come out, some
16	time during the PJM cycle, that particle is
17	off the bottom of the vessel, and that is why
18	this is athe pump-out test is a very good
19	measurement for our ability to clear the
20	solids from the vessel.
21	CHAIRMAN WINOKUR: Let me ask the
22	folks at PNNL, what your sense of these

	Page 132
1	experiments were, which included a full suite
2	of tests at MCE as well as the pump-out
3	experiments.
4	Was that pretty convincing data for
5	you?
6	DR. PEURRUNG: Well, and I'd like to
7	add, to clarify a little bit, we were not
8	initially involved in Phase II testing, but we
9	were asked by the project, in December of
10	2009, to get involved again, after they'd done
11	their tests, and found that the correlations
12	were predictingor actually, underpredicting
13	how much power it took to move material
14	around.
15	We got involved again, and we've
16	been participating and advising on these tests
17	along the way. I remember, when I heard about
18	the pump-down test, in some ways I thought,
19	well, that's not a bad criterion, in some
20	ways, to figure out if you can get the
21	material out of there.
22	It does not necessarily ensure that

	Page 133
1	material is, at all times, well-mixed in the
2	tank. But it does at least allow you to get
3	at, can you get material back out of these
4	vessels?
5	However, at the same time, I would
6	point out that we expressed some concerns to
7	the project about, that these pump-down tests,
8	how prototypic the systems were, that were
9	providing suction to their test vessels, and
10	we believe that the scaling of the pump-down
11	may be fairly complex.
12	And so again, it is something that
13	probably bears a further review as far as what
14	the appropriate scale-up ofagainst those
15	criteria are.
16	CHAIRMAN WINOKUR: Did the folks at
17	PNNL share any of this with you, Mr. Russo?
18	Their concerns.
19	MR. RUSSO: Yes. Again, on, I
20	believe somewhere around June 17th, when we
21	were getting towards closure, and I had not
22	seen any recent data from PNNL, I went to

	Page 134
1	visit Terry Walton and the Lab Director, Mike
2	Kluse, to solicit their most current, and as
3	we've discussed, their most current was a
4	little bit dated and they told us so.
5	Vulnerabilities.
6	So we had all that information,
7	analyzed it against the work that had preceded
8	since their full involvement, and incorporated
9	it into our risk analysis.
10	If I may, one other point that I'd
11	like to clarify from your opening remark. The
12	large-scale testing will be completed before
13	the vessels are installed.
14	So our current schedule now is that
15	of a large-scale testing completed, nominally,
16	some time in mid 2012. Vessel installation is
17	now scheduled for 2013. So we will be able,
18	if there are anyand again our confidence is
19	there won't bebut if there are any
20	modifications required to an internal
21	component of that vessel, we will have that
22	opportunity to do before the vessels are

installed.

1

2	CHAIRMAN WINOKUR: I think that's
3	good. I'd like to read you from the article.
4	There was an article in Weapons Complex
5	Monitor and it talked about an assessment that
6	Terry Walton, who you just mentioned, PNNL's
7	Director of Energy and Environment programs,
8	sent to you. I have it as June 6. But I
9	don't really know. It doesn't really make a
10	difference what it is.
11	And here's what he says.
12	"Phase II testing conducted at Mid
13	Columbia Engineering facilities modify the
14	vessel designs and operating conditions which
15	includes solids concentrationswhich we
16	haven't spoken much aboutnozzle velocities,
17	number of PJMs, bottom clearing, for HLP 22,
18	UFP 1, FUP 17 and FRP 2, with the goal of
19	showing the minimum tank requirements for
20	bottom material movement, post-design, basis
21	event restart, and nonaccumulation of solids
22	during pump-out.

Page 136 "The changes to the mixing systems in the vessels appear to just meet the minimum tank mixing requirements during the testing. This razor's edge approach means that any small change in a key testing element could result in a vessel that does not work at full scale in the plant." Then he goes through telling you many of PNNL's concerns about the simulants. I know you know about that. He questions a lot of things about the Phase II testing that was done at Mid-Columbia Engineering, the use of the PRA model, and so on and so forth. And I'm not completely clear, I'm getting that from you Dr. Peurrung, I mean that assessment. I may have misunderstood some things you said. So what I hear Pacific

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

22

17 some things you said. So what I hear Pacific 18 Northwest National Laboratory saying is that 19 based on all this testing, they still have a 20 lot of concerns about whether or not these 21 vessels can adequately mix.

There wasn't a question there; but

Page 137

1 please respond.

2	MR. RUSSO: So again, I guess the
3	best response is that those concerns were
4	immediately provided to our vessel assessment
5	team. They went through and evaluated each of
6	them, put them into the realtime data that we
7	were collecting from testing that had
8	completed some time in late April, early May
9	of `10, consulted with, among others, folks
10	from PNNL, folks fromboth Dr. Dickey and Dr.
11	Henschel, reviewed the CRESP data and got
12	their inputs on that information, and, in
13	essence, determined that the vulnerabilities
14	were such, that they needed to be included in
15	our vessel assessment reports that we
16	submitted to the department.
17	I think a clarification that is
18	importantand I'm speaking as the contractor,
19	federalcontractor project director. Our job
20	for the Department of Energy has many facets.
21	We are accountable for a budget. We are
22	accountable for a schedule. We are

accountable for a plan. 1 2 First and foremost, a plan that meets the functional requirements, that 3 4 protects the co-located worker and protects 5 the public. 6 The science, to applied science, to 7 design determinations, and the risks 8 associated with each of those, need to be 9 measured against how you could mitigate those 10 risks, and are there reasonable mitigations? 11 And it's not I'm going to just push the problem down the road. If there are 12 reasonable mitigations, if you can manage to 13 14 maintain the project schedule, and therefore 15 the project budget, and address those 16 concerns, that is our obligation, and that's 17 why part of our conclusion -- and I think Greq 18 Ashley and I have been stating this to you in 19 previous meetings--is that a large-scale test 20 would answer, scaling, simulant, is it truly 21 razor edge, or was there conservatism built 22 into our testing, that extrapolated to a

> Neal R. Gross & Co., Inc. 202-234-4433

Page 138

Page 1391degree of razor's edge, all legitimate2questions that must be answered, but must be3answered within the context of a holistic4project.5CHAIRMAN WINOKUR: Let me ask a6follow-up question. Then I'm going to turn7the floor over Dr. Mansfield. I've been8hogging this thing too long.9You have a Technology Steering Group10which Dr. Mansfield will talk to you about,11that did the vessel assessments, and they say12that they have a high degree of confidence,13that at least for the 33 Newtonian vessels,14that you have robust mixing.15MR. ASHLEY: Yes.16CHAIRMAN WINOKUR: Okay. And robust17would be defined as?18MR. RUSSO: Meeting the functional19criteria, which is getting the movements on20the bottom, so that you have no hydrogen21generation, getting adequate mixing, so that22you are, as you're working down to the next		
2 questions that must be answered, but must be 3 answered within the context of a holistic 4 project. 5 CHAIRMAN WINOKUR: Let me ask a 6 follow-up question. Then I'm going to turn 7 the floor over Dr. Mansfield. I've been 8 hogging this thing too long. 9 You have a Technology Steering Group 10 which Dr. Mansfield will talk to you about, 11 that did the vessel assessments, and they say 12 that they have a high degree of confidence, 13 that at least for the 33 Newtonian vessels, 14 that you have robust mixing. 15 MR. ASHLEY: Yes. 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that		Page 139
answered within the context of a holistic project. CHAIRMAN WINOKUR: Let me ask a follow-up question. Then I'm going to turn the floor over Dr. Mansfield. I've been hogging this thing too long. You have a Technology Steering Group which Dr. Mansfield will talk to you about, that did the vessel assessments, and they say that they have a high degree of confidence, that at least for the 33 Newtonian vessels, that you have robust mixing. MR. ASHLEY: Yes. CHAIRMAN WINOKUR: Okay. And robust would be defined as? MR. RUSSO: Meeting the functional criteria, which is getting the movements on the bottom, so that you have no hydrogen generation, getting adequate mixing, so that	1	degree of razor's edge, all legitimate
4project.5CHAIRMAN WINOKUR: Let me ask a6follow-up question. Then I'm going to turn7the floor over Dr. Mansfield. I've been8hogging this thing too long.9You have a Technology Steering Group10which Dr. Mansfield will talk to you about,11that did the vessel assessments, and they say12that at least for the 33 Newtonian vessels,13that at least for the 33 Newtonian vessels,14that you have robust mixing.15MR. ASHLEY: Yes.16CHAIRMAN WINOKUR: Okay. And robust17would be defined as?18MR. RUSSO: Meeting the functional19criteria, which is getting the movements on20the bottom, so that you have no hydrogen21generation, getting adequate mixing, so that	2	questions that must be answered, but must be
5 CHAIRMAN WINOKUR: Let me ask a 6 follow-up question. Then I'm going to turn 7 the floor over Dr. Mansfield. I've been 8 hogging this thing too long. 9 You have a Technology Steering Group 10 which Dr. Mansfield will talk to you about, 11 that did the vessel assessments, and they say 12 that they have a high degree of confidence, 13 that at least for the 33 Newtonian vessels, 14 that you have robust mixing. 15 MR. ASHLEY: Yes. 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that	3	answered within the context of a holistic
 follow-up question. Then I'm going to turn the floor over Dr. Mansfield. I've been hogging this thing too long. You have a Technology Steering Group which Dr. Mansfield will talk to you about, that did the vessel assessments, and they say that they have a high degree of confidence, that at least for the 33 Newtonian vessels, that you have robust mixing. MR. ASHLEY: Yes. CHAIRMAN WINOKUR: Okay. And robust would be defined as? MR. RUSSO: Meeting the functional criteria, which is getting the movements on the bottom, so that you have no hydrogen generation, getting adequate mixing, so that 	4	project.
7 the floor over Dr. Mansfield. I've been 8 hogging this thing too long. 9 You have a Technology Steering Group 10 which Dr. Mansfield will talk to you about, 11 that did the vessel assessments, and they say 12 that they have a high degree of confidence, 13 that at least for the 33 Newtonian vessels, 14 that you have robust mixing. 15 MR. ASHLEY: Yes. 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 oriteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that	5	CHAIRMAN WINOKUR: Let me ask a
 hogging this thing too long. You have a Technology Steering Group which Dr. Mansfield will talk to you about, that did the vessel assessments, and they say that did the vessel assessments, and they say that they have a high degree of confidence, that at least for the 33 Newtonian vessels, that you have robust mixing. MR. ASHLEY: Yes. CHAIRMAN WINOKUR: Okay. And robust would be defined as? MR. RUSSO: Meeting the functional criteria, which is getting the movements on the bottom, so that you have no hydrogen generation, getting adequate mixing, so that 	б	follow-up question. Then I'm going to turn
 You have a Technology Steering Group which Dr. Mansfield will talk to you about, that did the vessel assessments, and they say that did the vessel assessments, and they say that they have a high degree of confidence, that at least for the 33 Newtonian vessels, that at least for the 33 Newtonian vessels, that you have robust mixing. MR. ASHLEY: Yes. CHAIRMAN WINOKUR: Okay. And robust would be defined as? MR. RUSSO: Meeting the functional criteria, which is getting the movements on the bottom, so that you have no hydrogen generation, getting adequate mixing, so that 	7	the floor over Dr. Mansfield. I've been
 10 which Dr. Mansfield will talk to you about, 11 that did the vessel assessments, and they say 12 that they have a high degree of confidence, 13 that at least for the 33 Newtonian vessels, 14 that you have robust mixing. 15 MR. ASHLEY: Yes. 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that 	8	hogging this thing too long.
11 that did the vessel assessments, and they say 12 that they have a high degree of confidence, 13 that at least for the 33 Newtonian vessels, 14 that you have robust mixing. 15 MR. ASHLEY: Yes. 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 10 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that	9	You have a Technology Steering Group
12 that they have a high degree of confidence, 13 that at least for the 33 Newtonian vessels, 14 that you have robust mixing. 15 MR. ASHLEY: Yes. 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that	10	which Dr. Mansfield will talk to you about,
13 that at least for the 33 Newtonian vessels, 14 that you have robust mixing. 15 MR. ASHLEY: Yes. 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that	11	that did the vessel assessments, and they say
14 that you have robust mixing. 15 MR. ASHLEY: Yes. 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that	12	that they have a high degree of confidence,
 MR. ASHLEY: Yes. CHAIRMAN WINOKUR: Okay. And robust would be defined as? MR. RUSSO: Meeting the functional criteria, which is getting the movements on the bottom, so that you have no hydrogen generation, getting adequate mixing, so that 	13	that at least for the 33 Newtonian vessels,
 16 CHAIRMAN WINOKUR: Okay. And robust 17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that 	14	that you have robust mixing.
<pre>17 would be defined as? 18 MR. RUSSO: Meeting the functional 19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that</pre>	15	MR. ASHLEY: Yes.
MR. RUSSO: Meeting the functional criteria, which is getting the movements on the bottom, so that you have no hydrogen generation, getting adequate mixing, so that	16	CHAIRMAN WINOKUR: Okay. And robust
19 criteria, which is getting the movements on 20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that	17	would be defined as?
20 the bottom, so that you have no hydrogen 21 generation, getting adequate mixing, so that	18	MR. RUSSO: Meeting the functional
21 generation, getting adequate mixing, so that	19	criteria, which is getting the movements on
	20	the bottom, so that you have no hydrogen
22 you are, as you're working down to the next	21	generation, getting adequate mixing, so that
	22	you are, as you're working down to the next

	Page 140
1	tank, and the next tank, are creating quality
2	glass, and ensuring that you have the ability
3	to determine if you are getting any
4	accumulation, to avoid criticality, if you do.
5	CHAIRMAN WINOKUR: And PNNL is
6	online with that? You'reyou'd be
7	comfortable with those conclusions?
8	DR. PEURRUNG: Yes. I think, at
9	this point, PNNL has a, you know, has made its
10	recommendations about approach, and has made
11	the project aware of some of theof its
12	concerns about its assumptions. We're not
13	asked to help maketo make that decision.
14	We're not a signatory to those vessel
15	assessments.
16	And so we're not on the record, one
17	way or the other. Our role is to provide
18	technical insight into the behavior of the
19	material, and we have a series of products
20	where we've made our concerns available to
21	both the contractor and to the department.
22	CHAIRMAN WINOKUR: Based on the

	Page 141
1	technical knowledge that you presently have
2	available, and the studies you perform, to the
3	Newtonian vessels you've looked at, as well as
4	some of the data you reviewed in Phase II
5	testing, convince you that these vessels mix
б	robustly?
7	DR. PEURRUNG: Not per our
8	definition of robust mixing.
9	CHAIRMAN WINOKUR: And what is your
10	definition of robust mixing?
11	DR. PEURRUNG: Our definition of
12	robust mixing means off-bottom suspension.
13	CHAIRMAN WINOKUR: Okay. All right.
14	I think I'll turn it over to Dr. Mansfield.
15	Thank you very much.
16	MR. DWYER: Mr. Chairman, if I could
17	just interrupt briefly for one clarification.
18	Frank, you said that the testing will be
19	completed, the large-scale testing will be
20	completed mid-2012?
21	MR. RUSSO: Large-scale testing will
22	go on indefinitely. The tests that have to be
	Nool P. Grogg & Co. Ing

	Page 142
1	run, that confirm the internal designs, which
2	again we feel, as the design authority, are
3	highly probable to be confirmed, will be
4	completed in the 2012 time period. After
5	that, there's a myriad of additional testing
6	that we would say would go on indefinitely,
7	including operator training testing, that you
8	can use the large-scale facility to perform.
9	MR. DWYER: That commitment is as of
10	when? When did you decide that was the
11	schedule, if I could
12	MR. RUSSO: We have a body called
13	the Issue Resolution Team, and both Dale and
14	I chair that, and when any technical issues
15	come up that can't be resolved at the working
16	level, between either our folks, or the
17	department and our folks, it comes to that
18	body. When they came to us about three weeks
19	ago, they indicated that a unscrubbed
20	schedule, meaning just a notional schedule,
21	would have that testing done in `13. The part
22	we need for the installation of vessels.

Page 143 An immediate look at the 1 2 construction schedule indicated that `13 was 3 too late. We had them go back, look at what 4 they would have to do. The long pull in this 5 obviously is the selection of a simulant, and 6 the agreement that that simulant is 7 representative. But with that as the caveat, 8 they came back and said 2012 was a doable date 9 for the early tests, that would confirm that there is no further modification to the vessel 10 11 internal. 12 MR. DWYER: Okay. That's rather 13 important to us, because in the answers to the 14 questions that have been the initiation of this hearing, no date or schedule was 15 16 provided, and, in fact, one could have 17 inferred that the testing was going to be done 18 in the completed constructed facility. So 19 that's not the case. You're going to do it 20 somewhere else and the necessary parts will be 21 done by the middle of 2012? 22 MR. RUSSO: That's correct.

Page 144 1 MR. DWYER: Thank you. Thank you, 2 Mr. Chair. 3 CHAIRMAN WINOKUR: Dr. Mansfield. 4 MEMBER MANSFIELD: Thank you. Many of 5 my questions have been covered by what's been 6 said already. I just want to make sure, for 7 the record, that the PNNL report referred to, 8 the 182 report, that's the M-3 mixing report? DR. PEURRUNG: That's the report we 9 10 did on phase testing--11 MEMBER MANSFIELD: In spring of `09? 12 DR. PEURRUNG: Yes. May 2009. 13 MEMBER MANSFIELD: Yes. Fine. 14 Okay. I'll have some questions about that. 15 But first, I'm getting a confused 16 picture of what--of how you move particles out 17 of tanks. From what you've said so far, Mr. 18 Dickey, Dr. Dickey, it's sufficient to clear 19 the bottom, because then the currents from the 20 pump suction are going to take the particles 21 out of the bottom, regardless of how far up in 22 the tank they're suspended?

Page 145 1 DR. DICKEY: No. 2 MEMBER MANSFIELD: That's not true. 3 Okay. 4 DR. DICKEY: Not true. 5 MEMBER MANSFIELD: Then what does clearing have to do--for instance, what does 6 7 the cleared area compared to the pump suction 8 area, and pump--and that pump suction you had 9 available, have anything to do with particle removal? 10 DR. DICKEY: Basically, the problem 11 is that the zone of influence, the bottom 12 13 clearing must be sufficient not to leave dead 14 zones on the bottom, where particles do not 15 move at all. 16 MEMBER MANSFIELD: Okay. DR. DICKEY: And then what has 17 18 happened--and this is again evidenced more by 19 the experiment than any theory--that once you 20 get the particles sufficiently in motion, that 21 they are lifted far enough up into the tank, 22 such that they are at the level of the pump

	Page 146
1	suction.
2	MEMBER MANSFIELD: And how many pump
3	suctions are available for, say, HLP-22?
4	MR. ASHLEY: There is a single pump
5	suction.
6	MEMBER MANSFIELD: Single pump
7	suction.
8	MR. ASHLEY: Yes.
9	MEMBER MANSFIELD: So the particles
10	40 feet away are going to see sufficient
11	motive force from the pump suction to migrate
12	all the way over to the pump suction inlet and
13	be removed?
14	DR. DICKEY: Yes, and if you even
15	listen to some of the people that watched the
16	particles, looked like they even slide down
17	the slope in a dished head, so
18	MEMBER MANSFIELD: I'm sure they
19	will. I'm sure they will. But they slide
20	down the slope, and they're still half the
21	diameter away from the pump suction. I'm not-
22	-I don't have a picture of how the particles

		Page
1	on the bottom are going to move, when they	
2	have been plowed out in a zone of influence up	
3	the sides of the wall, or up into gliding	
4	zones from multiple PJMs, how they're going to	
5	get to the pump suction. Is thatnobody else	
6	has a problem with that?	
7	DR. DICKEY: I could say they do but	
8	I won'tno. They reallyit is one of those	
9	kinds of things, that you impart sufficient	
10	motion to the particles. You're not trying to	
11	remove the last particle that's there. You're	
12	just simply removing more particles than you	
13	put in, and that does seem to happen, and	
14	that's the reason for the pump-out.	
15	MEMBER MANSFIELD: Okay. Then why	
16	do you need to suspend particles very high, at	
17	all? What's this issue ofwhy do you need	
18	the one-third scaling, if the particles only	
19	have to move a few inches off the bottom in	
20	order to be sucked into the pump suction?	
21	DR. DICKEY: Well, they have to be	
22	moved far enough off the bottom.	

Page 148 MEMBER MANSFIELD: A new--not a few 1 2 How many inches? How far? inches? 3 DR. DICKEY: Well, you have to have 4 them suspended long enough above the 3 inch, 5 or wherever the pump suction is, for that period of time to draw a sufficient number of 6 7 them out, because they're going to all fall 8 back down again. Some of the rapidly settling 9 particles will be back on the bottom for a significant portion of each cycle. 10 So you have to lift them far enough, that they are 11 12 being drawn off for a sufficient period of 13 time. 14 MEMBER MANSFIELD: But you're doing 15 it with multiple pulses? 16 DR. DICKEY: Yes. 17 MEMBER MANSFIELD: Okay. So you've always got another --18 19 DR. DICKEY: You're seeing a pulse 20 every five minutes or so, and you're pumping 21 out over an hour, kind of thing, so yes, you 22 will see many pulses.

Page 149 MEMBER MANSFIELD: How do you scale 1 2 the pump suction inlet geometry in issue? DR. DICKEY: Well, the first step 3 4 was to make it just geometrically similar. In 5 other words--6 MEMBER MANSFIELD: Geometrically 7 similar in...? 8 DR. DICKEY: In a small scale. Τn 9 other words, the large scale--In area? 10 MEMBER MANSFIELD: 11 DR. DICKEY: The large scale is 3 12 inches off the bottom. You reduce it in proportion of the scale of the tank. 13 14 MEMBER MANSFIELD: Linearly? By 15 area? 16 DR. DICKEY: Linearly. And then the 17 rest of it, we've gone around, we've looked at 18 various ways of scaling that characteristic. 19 The primary characteristic that was selected 20 was a minimum velocity, to make sure that the 21 particles were moving out of the vessel 22 through the piping, in effect, and--

Page 150 MEMBER MANSFIELD: So pumping 1 2 velocity. 3 DR. DICKEY: The pumping velocity. 4 And then we looked at it from the standpoint 5 that that velocity seemed appropriate for 6 capturing particles and not dragging them in 7 from too far away. 8 MEMBER MANSFIELD: So what you're 9 telling me, that suspension farther above the ground, above the bottom of the vessel, then 10 is associated with zone of influence clearing-11 12 13 DR. DICKEY: Yes. 14 MEMBER MANSFIELD: --is still 15 necessary? 16 DR. DICKEY: Yes. 17 MEMBER MANSFIELD: And so scaling by 18 a gravitational settling number, for instance, 19 is still important? Or whatever. 20 DR. DICKEY: Yes, yes. 21 MEMBER MANSFIELD: Okay. You 22 mentioned that industry normally requires

		Page	151
1	fairly large-scale testings before they'll		
2	make an investment in a large, in a big		
3	process, installation. What percentwhat		
4	scale do industries usually do? Five percent?		
5	Ten percent?		
б	DR. DICKEY: I would have gone		
7	exactly the other way. That very, very often,		
8	the scales are very substantial.		
9	MEMBER MANSFIELD: Very substantial.		
10	DR. DICKEY: We were very successful		
11	at doing scale testing in a 3 foot diameter		
12	tank, to scale up to 80 foot diameter vessels,		
13	fairly routinely, and I think Mror Dr.		
14	Eccleston would have commented along the same		
15	lines, that they have done tests in basically		
16	laboratory glassware and designed full-scale		
17	10-, 15 foot diameter reactors.		
18	MEMBER MANSFIELD: So factors of 10		
19	or 20 scale-up, in length, are not uncommon at		
20	all?		
21	DR. DICKEY: Not uncommon at all.		
22	MEMBER MANSFIELD: Any way that, if		

	Page 152
1	you're taking solids off the bottom, the way
2	that you indicated, is there anythe smaller
3	particles get taken off more easily and large
4	particles get left behind for the end?
5	DR. DICKEY: The smaller particles
6	will be suspended more nearly uniformly, so
7	that if you put in 5 percent small particles,
8	you're going to be drawing off 5 percent small
9	particles. If you place large, high density,
10	rapidly-settling particles in, and if you put
11	5 percent of those in, you would most likely
12	be drawing off 10 or 15 percent.
13	And it's a matter of how much of a
14	gradient you'd have with the different
15	particles.
16	MEMBER MANSFIELD: Okay. Thank you.
17	Thank you, Dr. Dickey.
18	Mr. Ashley, I want to ask some
19	questions about the Low Order Accumulation
20	Model that's important for certifying tank
21	mixing design. That's correct, isn't it? You
22	will be using LOAM [Low Order Accumulation

	Page 153
1	Model], L-O-A-M, to certify tank designs?
2	MR. ASHLEY: No, no.
3	MEMBER MANSFIELD: You won't?
4	MR. ASHLEY: LOAM was used as
5	another method, in addition to the small-scale
6	testing, was used as another method to provide
7	competence in the ability to meet the mixing
8	criteria. Specifically, LOAM was used to look
9	at the accumulation, the solids accumulation
10	criteria for the vessels.
11	MEMBER MANSFIELD: So what will you
12	use to certify the vessel design, if you're
13	not going to use LOAM?
14	MR. ASHLEY: Well, currently, as was
15	established in our issue response plan, the
16	IRP, as closure criteria 5, was the use of CFD
17	[Computational Fluid Dynamics] and the V&V
18	[Verified and Validated] of CFD to provide
19	final design confirmation of the vessels. Now
20	we have, as mentioned earlier, we haveare
21	going to perform large-scale tests, which will
22	provide us another opportunity to collect data

	Page 154
1	in support of final design confirmation of the
2	vessels.
3	MEMBER MANSFIELD: Okay. Later, we
4	will talk about hydrogen pipes and ancillary
5	vessels. I was under the impression there,
6	that LOAM is used in the design criteria, in
7	the design QRA [Quantitative Risk Analysis],
8	instead of
9	MR. ASHLEY: No.
10	MEMBER MANSFIELD: That's from C.
11	MR. ASHLEY: No. LOAM has no role
12	in the hydrogen and piping ancillary vessels.
13	MEMBER MANSFIELD: Okay. Why don't
14	you go on to somebody else, Mr. Chairman?
15	CHAIRMAN WINOKUR: All right. We
16	may come back to this for just a little bit,
17	but I think for the time being, we're going to
18	go to Mr. Bader.
19	MEMBER BADER: Good morning.
20	MEMBER MANSFIELD: Go ahead. That's
21	all I have.
22	MEMBER BADER: Okay. Dr. Kosson,

Γ

	Page 155
1	I'd like to start out by going to one of your
2	recommendations, and that was your
3	recommendation number ten. And in this you
4	were talking about the need forthat the
5	preliminary CSER, Criticality Safety
б	Evaluation Report, needed to be revised, and
7	include workable and validated methods for
8	criticality controls.
9	As a first question, could you
10	summarize what you think that revision should
11	incorporate?
12	DR. KOSSON: There are multiple ways
13	that, or approaches that could be taken to
14	criticality controls. However, I think what's
15	most important here is understanding why we
16	wrote that recommendation, because the current
17	CSER, which my understanding is is scheduled
18	to be revised before the end of this calendar
19	year, explicitly was predicated on sampling
20	accuracy and precision of plus or minus 5
21	percent of the vessel contents.
22	And that sampling accuracy and

		Page
1	precision in a pulse jet mix vessel, with the	
2	sampling strategy that was being proposed, we-	
3	-our opinion was that that was not workable,	
4	that was not achievable within those tolerance	
5	limits. Therefore, as an underpinning of the	
6	current CSER, that was not a valid assumption.	
7	That'swe believe, based on other experience,	
8	that the sampling accuracy directly out of the	
9	pulse jet mixers would be much less precise to	
10	representing what is in the entire vessel,	
11	because of the mixing issues that were	
12	discussed earlier.	
13	However, the alternative strategies	
14	can potentially include the sampling and	
15	understanding of the criticality controls	
16	prior to getting into the pulse jet mix	
17	vessels, and that's one of the options, I	
18	understand, that's currently being	
19	contemplated, and there are other options for	
20	that.	
21	The other issue that we raised, and	
22	were concerned about, was the potential for	

	Page 157
1	either particle settling-based segregation, or
2	chemical-based segregation, if specific
3	neutron poisons were extracted,
4	preferentially, during the processing. In our
5	opinion, the current CSER did not adequately
6	address those issues, but as we understood
7	from the comments earlier, that those issues
8	are being looked at as part of the CSER
9	revision that's in process right now.
10	MEMBER BADER: So just as a matter
11	of interest, what would you estimate the
12	difference in accuracy would be, if you were
13	measuring at the outlets of the vessels?
14	You said you can't maintain the
15	plus/minus 5 percent. What do you think it
16	might be?
17	DR. KOSSON: The stratification in
18	the vessel, and the oscillations that occur,
19	will result, in part, due to the pulse jet
20	mixing, if it's maintained in a cyclic
21	fashion, which is currently the way most of
22	them are designed, versus whether there are

Page 158 other types of pulse jet mixing strategies. 1 2 However, we believe, based on prior 3 experience, that 20 percent would be optimistic, but that there is not a good 4 5 experiential basis, in actual test data, to 6 even predict how close it will be. That 7 that's one of the things that we felt was very 8 important, if criticality controls are reliant 9 on sampling from the vessels themselves, that demonstration of the precision of that 10 sampling, and the accuracy of that sampling is 11 an essential ingredient in full-scale or 12 13 large-scale testing. 14 MEMBER BADER: If I understand your answer, this is the kind of narrow band that's 15 16 not something like an instrumentation or a 17 band, it's caused by the nature, it's that 18 plus the nature of the process itself. 19 DR. KOSSON: Yes, sir. 20 Dr. Dickey, would you MEMBER BADER: 21 agree with that, or would you like to add some 22 insights?

		Page	159
1	DR. DICKEY: Yes, I would agree with		
2	the basic concept of it. I would qualify that		
3	with saying that the small particle sizes, and		
4	the liquid, can probably be sampled rather		
5	effectively, probably within the plus or minus		
6	5 percent. But certainly the dense, rapidly-		
7	settling particles, that may be fissile		
8	material, would be very difficult to sample,		
9	unless the timing were such that you could		
10	time it with the pulse, or something of that		
11	sort.		
12	MEMBER BADER: That should be an		
13	interesting problem, to try and check timing		
14	with the pulse.		
15	DR. DICKEY: I would agree. I fully		
16	agree.		
17	MEMBER BADER: Okay. So back to		
18	what Dr. Kosson said, you're in agreement? Is		
19	that a good		
20	DR. DICKEY: Yes. I'm in agreement.		
21	MEMBER BADER: Okay. Dr. Peurrung,		
22	would you like to make any comments on that?		

Page 160 DR. PEURRUNG: I essentially 1 No. 2 would agree with Dr. Kosson and Dr. Dickey. 3 MEMBER BADER: All right. Ms. 4 Busche, you knew this was coming. 5 MS. BUSCHE: Yes. 6 MEMBER BADER: Is that consistent 7 with what you understand, and then my 8 question, second question would be, what is 9 the implication, having to deal with the plus/minus, say 20, 20 percent, at best? 10 MS. BUSCHE: I do agree. 11 I think 12 with the technical challenges that we have in actually developing a Criticality Safety 13 14 Evaluation Report for the final pre-treatment 15 facility. In doing so, we are addressing some of the segregation, where we are with 16 17 That is one technical component of poisoning. 18 that, and that is, I think, to clarify, we are 19 on target for that for the end of the year. 20 We are not on target for the end of this year, 21 to actually have the revised Criticality 22 Safety Evaluation Report.

Page 161 MEMBER BADER: I'm going to go into 1 2 some of the other things that I think --3 MS. BUSCHE: Right. So to address those--and I think my candid answer at this 4 5 point in time is somewhat I don't know. We're 6 evaluating the results of the vessel 7 assessment summary report, so that we can 8 clearly understand the nature and the location 9 of solids, not to oversimplify that, but so that we can actually determine what is our 10 11 path forward to do that analysis. We don't 12 We're in the process of evaluating know. 13 those vessel assessment summary reports to 14 develop that. MEMBER BADER: Would it be fair to 15 16 say that it has to be somewhere other than on 17 the outlet of the vessels, in your opinion? 18 MS. BUSCHE: I don't understand the question. 19 20 MEMBER BADER: In other words, would 21 you want the sampling to be done either in the 22 receipt vessels that are being talked about,

	Page 162
1	being built in the tank farms, the batch
2	vessels, orgo ahead.
3	MS. BUSCHE: A fundamental tenet of
4	our criticality safety strategy, going
5	forward, has to be that criticality is
б	incredible in our facility.
7	MEMBER BADER: I understand that.
8	MS. BUSCHE: It has to be, to meet
9	the fundamental tents of 420, cause we have no
10	mechanism to monitor, once it's in the plant.
11	So to do that, it will be, I believe, aI'll
12	call it a specific administrative control on
13	the waste acceptance criteria, that we will,
14	through our pre-feed qualification program,
15	have to verify that criticality is incredible,
16	by the construct of that final criticality
17	safety evaluation, once it's done.
18	So it will be based on the pre-feed
19	qualification sample taken at tank farms in
20	whatever mixing efficiency. We will have to
21	factor that in to our analysis.
22	MEMBER BADER: Would it be fair,

Page 163
then, to say, if you're sampling in the tank
farms, if there is any accumulation of
material inside vessels in the pre-treatment
facility it makes it very hard to maintain
that criticality is incredible.
MS. BUSCHE: Yes. The current
results
MEMBER BADER: That was
MS. BUSCHE: Yes. My currentyes,
it would. My current understanding is a
result of the testing that we've completed to
date, is solids do not accumulate, but there
are still some uncertainties that I believe we
are going to evaluate. We've done pieces, in
parts, but to make sure we have the
comprehensive answer, that's where the large-
scale testing will come into play.
MEMBER BADER: So it seems to me
that what againand this is not unusual
you're dealing with a low probability, very
high impact situation. So that, to me, would
also say that what you really have to do is to

Page 164 be sure that there is no accumulation in 1 2 vessels, to an incredibly high degree. Is that a fair statement? 3 4 MS. BUSCHE: Absolutely. That was 5 the testing criteria that we put forth as part of the final phases of M-3. That was our 6 7 safety criteria; yes. 8 MEMBER BADER: Okay. And I would 9 then go back, and say you've heard the discussions here, and there is--probably the 10 11 best way to characterize it is agreement among some of the--your experts, as to whether 12 13 that's possible or not possible. 14 MS. BUSCHE: Correct. I mean, I--15 and I don't disagree with them. I mean, I'm 16 not a--17 MEMBER BADER: Yes. 18 MS. BUSCHE: I can't really 19 challenge their pedigree. In going through 20 the vessel assessment summary reports, there's 21 quite a few parameters associated with solids, 22 that we're trying to figure out our nuclear

	Page 165
1	safety control strategy for the entire plant,
2	that those will play into.
3	So whatever those uncertainties are,
4	that we believe, through analysis, we can
5	demonstrate criticality is incredible, will
6	need to be protected with a technical safety
7	requirement.
8	MEMBER BADER: Well, and just to
9	make it even more interesting, I would think
10	that therewell, we've heard about someI've
11	just heard about some testing from Mr. Russo,
12	that's going to be completed, 2012. But the
13	large-scale testing, I understand, can't start
14	before 2013; is that correct?
15	MR. RUSSO: No. What we're doing,
16	we are doing a series of tests, and I'll
17	answer your question by saying that the
18	elements of the large-scale testing that
19	affect the physical design of the internals of
20	the vessels, will be completed by mid-2012,
21	which is approximately a year in advance of
22	the critical path date to install those

	De ma 166
1	Page 166 vessels and still meet the regulatory
2	milestone.
3	MEMBER BADER: So you're starting
4	the large-scale testing
5	MR. RUSSO: Large-scale testing
6	MEMBER BADER:a year earlier than
7	we had previously heard?
8	MR. RUSSO: I believe that to be
9	correct, because again, when Dale Knutson and
10	I had our IRT [Independent Review Team]
11	meeting, a couple of weeks ago, and the team
12	came in with a very notional schedule, we
13	asked them to go back and see if they can
14	improve it for the first test, and the
15	sequence of tests, large scale, so that we can
16	do the various confirmations of the
17	vulnerabilities that you've heard discussed,
18	and not necessarily full agreement on here
19	today.
20	That test would be performed in
21	advance of the installation of the vessels
22	that are the HLP-22, HLP-27, the ones that are

	Page 167
1	in question in terms of accumulation.
2	MEMBER BADER: All right. Ms.
3	Busche, let me come back to you.
4	First of all, I think it's good news
5	that the large-scale testing is starting
6	earlier, because just looking at the
7	information that'll be gathered from that,
8	would you believe that the large-scale testing
9	really needs to be completed, particularly in
10	terms of vessel clearing, before you can
11	definitely write your criticality report?
12	MS. BUSCHE: The final criticality
13	evaluation report?
14	MEMBER BADER: Final criticality.
15	MS. BUSCHE: Yes. Okay. We will be
16	updating, because we're on the preliminary
17	stage
18	MEMBER BADER: Sure.
19	MS. BUSCHE: We will be updating
20	based on what we know today, which I believe
21	will give us better insight, as those test
22	results are coming in, as to where the final

Page 168 criticality evaluation will be. 1 2 MEMBER BADER: So if the--and now my 3 memory is that the large-scale testing will continue until into 2014, and possibly up to 4 5 2015. Has that changed? 6 MR. RUSSO: No. The current 7 thinking is that that testing, in terms of the 8 operability of the plant, and the internal 9 designs, will go on indefinitely. There's no reason not to keep that as a mockup for the 10 operators, for future dates. Once the 11 12 investment is made, we are in discussions with the tank farm right now, in terms of, does 13 14 that have utility to them, and they've indicated, you know, initially--and these are 15 16 how do we get the best value to the taxpayer for the investment of the large-scale test? 17 18 It actually serves to help operator training 19 and operator management of the control system. 20 So from a testing--21 MEMBER BADER: Mr.--hold on. Hold 22 on, Mr. Russo.

	Page 169	
1	MR. RUSSO: Yes, sir.	
2	MEMBER BADER: I don't think	
3	indefinite testing, or testing that continues	
4	for an indefinite period helps Mrs. Busche.	
5	MR. RUSSO: Again, let me clarify	
6	that point. I'm sorry. Ines says that it's	
7	the Latin in me sometimes.	
8	The testing to validate the	
9	operating parameters of the plant will be done	
10	before 2014 is over. The testing or the	
11	utilization of that same facility, that same	
12	large-scale capability, as a mockup for	
13	operator training, is the second component.	
14	That's not testing. That is just how they use	
15	it as a operator training device.	
16	MEMBER BADER: Is it reasonable to	
17	say, that by the end of 2014, or the beginning	
18	of 2015, Ms. Busche will have the data she	
19	needs to write the final report, the	
20	criticality evaluation?	
21	MR. RUSSO: Yes.	
22	MEMBER BADER: At that point, how	

 far away are you from initial "hot MR. RUSSO: Hot testing? MEMBER BADER: Yes. MR. RUSSO: In the pre-trans still over three years away. 	testing"?
 3 MEMBER BADER: Yes. 4 MR. RUSSO: In the pre-transmission 	
4 MR. RUSSO: In the pre-tr	
5 still over three years away.	reat, you're
6 MEMBER BADER: All right	. So that
7 really is a pretty critical piece of	of
8 information. Would it help to acce	elerate the
9 testing, from a criticality point of	of view?
10 MR. RUSSO: The	
11 MEMBER BADER: Let me put	t the
12 background on that.	
13 MR. RUSSO: Yes, please.	
14 MEMBER BADER: I mean, th	his is
15 something that simply can't be left	t to any
16 chance at all. The earlier you do	it, if you
17 find something unexpected, the more	e time you
18 have either to address it through a	a change in
19 the plant, which is unlikely, given	n your own
20 words, or in the tank farms.	
21 MR. RUSSO: So the only of	caveatI
22 would agree with that premise but 2	I also

Γ

	Page 171
1	believe it is extremely important, and if
2	history is anything, you learn from itthat
3	before we finalize the criteria for a large-
4	scale test, we need to get agreement amongst
5	our consultants, and at least full knowledge
6	by you, the Board, as to what the simulants
7	will be. Are those simulants truly
8	representative? Is there a suite of simulants
9	that would have to be used to demonstrate the
10	questions that still remain, the
11	vulnerabilities that still remain?
12	What is the appropriate scale-up
13	factor? So my point, Dr. Bader, is that the
14	schedule is very much predicated on getting a
15	scope definition that will not have any
16	unanswered questions, for the very reason you
17	stated. Donna Busche must have clarity.
18	MEMBER BADER: So those tests have
19	to, beyond any reasonable doubt, lay to rest
20	the question of buildup of material in the
21	vessel; is that correct?
22	MR. RUSSO: Presuming we can reach

		Page 172
1	agreement, we believe it's going to be a very	
2	complicated task to define a simulant that	
3	will satisfy the various expert bases, that	
4	will have	
5	MEMBER BADER: The size and density	
6	of particles.	
7	MR. RUSSO: Cohesion.	
8	MEMBER BADER: Cohesiveness.	
9	MR. RUSSO: Cohesiveness, right.	
10	MEMBER BADER: And then you have to	
11	also go into operation, simulation of	
12	operation.	
13	MR. RUSSO: Right. And one of the	
14	reasons that	
15	MEMBER BADER: Mult	
16	MR. RUSSO: Go ahead. I'm sorry.	
17	MEMBER BADER: Multiple batches run	
18	through the test. You're going to have to	
19	also look at bubbler and PJM control	
20	strategies. The effects of pipe and pump	
21	inlet and outlet effects. Sampling system.	
22	You've got to verify the sampling system.	

		Page
1	You have to demonstrate your heel	
2	clean-out and inspection system, whether you	
3	can actually see something with those cameras.	
4	Now I go backand again, talking	
5	about the extensionreally, this is an	
6	incrediblyit is a test to the operating	
7	system, and capability, in order to make it	
8	meaningful. I would say that the other thing	
9	that you're going to need to demonstrate is	
10	that for probably the first time in the	
11	history of this project, that a success-driven	
12	test really actually is successful, without	
13	major hiccups, because it looks to me like,	
14	with the schedule you've got on these tests,	
15	if anything goes wrong of any substance, and	
16	there's an issue, and if nothing else, some of	
17	these earlier tests that were supposed to	
18	demonstrate that mixing occurred actually and	
19	successfully in the way they were supposed to,	
20	what they proved was there were issues.	
21	So it's not at all a certainty that	
22	you can do this as a success-driven test, and	

	Page 174
1	it is a very complex, very lengthy test.
2	Ms. Busche, if all these things were
3	done at the time you succeeded, or these tests
4	came up with good results, you would then be
5	able to write your final criticality
6	evaluation report; is that a fair statement?
7	MS. BUSCHE: Correct.
8	MEMBER BADER: Is there anything
9	that we've touched on that would be needed in
10	addition to what we've just gone over?
11	MS. BUSCHE: From the criticality
12	safety perspective, no. I think that the
13	fundamental criteria is no accumulation in the
14	vessels, based on the current geometry that we
15	have. So we have to preclude accumulation in
16	the vessels.
17	MEMBER BADER: Do you think all the
18	different things that were mentioned are
19	needed?
20	MS. BUSCHE: We need to refine or
21	reduce the amounts of uncertainties to
22	provide, I believe, the flexibility we're

	Page
1	going to need in the operations envelope, and
2	it'll go back to the pre-feed qualification as
3	to how we set the controls to preclude
4	criticality in the plant.
5	MEMBER BADER: Do you
6	MS. BUSCHE: I willgo ahead.
7	MEMBER BADER: Do you think there
8	will be a reasonable basis for establishing
9	the facility, the control philosophy and the
10	operating and control instrumentation set?
11	MS. BUSCHE: There will be a basis.
12	It may be conservative until we get plant
13	operation then to conclude what testing would
14	notwe could not gain from testing. So I
15	will have to err on the conservative side when
16	setting that control, if we have uncertainties
17	that aren't answered by that large-scale test.
18	MEMBER BADER: Dr. Kosson, having
19	heard all this, is this the kind of a test
20	program you had in mind?
21	DR. KOSSON: The test program, as
22	you've mentioned, is necessarily complex, and

	Page 176
1	it's unfair to characterize a test program
2	until you've had the opportunity to review a
3	detailed written scope of that test program.
4	So I really don't think that I can comment on
5	it at this time. I've not seen any outline,
6	even, level of what the full scope of the
7	program would look like, and as we all know,
8	all of thewhether it satisfies the needs or
9	not is in the details.
10	MEMBER BADER: Dr. Dickey, comments?
11	DR. DICKEY: Certainly the things
12	that you mentioned sound like they have to be
13	part of the program, and things that need to
14	be resolved, and that's certainly the kind of
15	thing that I would see out of a large-scale
16	test.
17	MEMBER BADER: Dr. Peurrung.
18	DR. PEURRUNG: I have no additional
19	comments.
20	MEMBER BADER: Mr. Russo, you
21	mentioned that you would consult with your
22	experts. Do you believe you need to bring

	Page 177
1	them in, and as you said, get agreement from
2	your experts on some of these things?
3	MR. RUSSO: Absolutely. I think we
4	need to demonstrate public confidence. We
5	need to bring in the best minds in the
6	country, and that's why Deputy Secretary
7	Poneman put out the letter he put out to all
8	the National Laboratories, and the other
9	sites, indicating that this was one of their
10	number one priorities. We also believe it's
11	going to be very important to have your staff
12	involved in, not the determinations, but a
13	quality check on those determinations, in
14	terms of, particularly in my mind the simulant
15	selection, but also the scaling, so that as we
16	progress through the testing, we can all
17	arrive at a sense of confidence together.
18	MEMBER BADER: At this point, I
19	think I've used enough time.
20	CHAIRMAN WINOKUR: All right. Thank
21	you, Mr. Bader.
22	Mr. Brown.

Page 178 1 MEMBER BROWN: Yes. Thank you, and 2 first, I'd like to thank the witnesses for being here this morning and being so 3 4 responsive to the questions. 5 You've addressed a number of the issues that I was going to ask before I got a 6 7 chance to ask them, but I will go through some 8 of them again, just to make sure I'm clear on 9 these points. One of the points I would raise: it 10 11 seems to me, from what I've heard thus far, 12 that Mr. Knutson's statement, opening 13 statement, where he said you were taking the 14 advice of your experts, and you were addressing all of them, I'm not sure if I'm 15 16 confident yet, but I've heard a lot of things 17 this morning that suggest that some of the 18 concerns, which I'll go through here in a minute, are being considered. 19 20 One of the things you said, Mr. 21 Ashley, earlier, was that you were increasing 22 the power into the vessels by--on the order of

Page 179 50 percent. Is that correct? 1 2 MR. ASHLEY: That's correct. HLP-3 22, for example, the design prior to going 4 through the small-scale testing, and, you 5 know, measurement of performance against 6 requirements, had 12 PJM pulse jet tubes. The 7 design that we are going forward with has 18 8 pulse jet tubes. 9 MEMBER BROWN: But we need to understand that there's a limit to how much 10 11 you can increase the power into those vessels. 12 This isn't open-ended, where you can just keep 13 going; is that right? 14 MR. ASHLEY: That's correct. There 15 are physical limitations. For example, the 16 increase in the pulse jet, number of pulse jet 17 tubes, takes up volume in the vessel, thereby reduces the batch, the available batch size of 18 19 that vessel, to a small extent. That's been 20 evaluated. 21 We've evaluated that with the tank 22 farm. We also have limitations in terms of

		Page	180
1	the air that we have, in particular the		
2	important to safety air. We also have current		
3	limitations in the design of our vent system.		
4	All of our vessels are vented to assure the		
5	release of gas, the dilution of gas. So there		
6	are points at which increased power in these		
7	vessels would cascade into other potential		
8	changes.		
9	So we arewe do have to consider		
10	that when we consider the additional		
11	capability that we can provide in these		
12	vessels. As I said, the testing provided		
13	testing and all of the assessments and		
14	analysis provide us an indication of what was		
15	acceptable to meet requirements in terms of		
16	moving forward with the design of these		
17	vessels.		
18	MEMBER BROWN: And another one of		
19	the limitations is your emergency power,		
20	because these have to operate during a loss of		
21	power to the plant; is that right?		
22	MR. ASHLEY: That's correct. AS I		

1	said, we only haveright now, in the design,	Page
2	there is a certain number of compressors that	
3	provide important to safety air, those	
4	compressors are, in a loss of off-site power,	
5	are run from a emergency diesel. So that is	
6	an element of the design that has to be	
7	considered as we consider the modifications to	
8	these vessels.	
9	MEMBER BROWN: The subject we've	
10	been talking mostly about this morning is	
11	accumulation of solids in these vessels, and	
12	Ms. Busche and others have addressed why	
13	that's important not to allow that to occur.	
14	In response to the Board's	
15	questions, there were other options to just	
16	eliminating the possibility of accumulation.	
17	I mean, there is the feed that you put into	
18	it. There's also what some people have	
19	referred to as a Plan B, where you are able to	
20	muck the vessels out or monitor the vessels	
21	during operation, and I'd like to touch on	
22	those subjects for a second.	

181

Page 182

	Pa
1	The options for the input into the
2	vesselsand I guess this is going to be
3	directed at the three experts, and then I'll,
4	if anybody else wants to comment.
5	But my question is the feasibility
6	of controlling these characteristics, and the
7	technical gaps that remain in implementing
8	some of these ideas, and I'm asking this now,
9	it may be more appropriate in the tank waste
10	section that's coming on a little later. But
11	I don't think all of you will be here then.
12	So I'd like to ask the questions now.
13	What are the challenges in changing
14	the rheological properties of the waste, prior
15	to feeding it into the plant?
16	Dr. Peurrung.
17	DR. PEURRUNG: We have done some
18	work with rheological modifiers. There are
19	materials that you can use to change the
20	rheology. I think I'm somewhat more concerned
21	about the match between the particle size and
22	density distribution of the tank waste as they

Page 183 currently exist and the waste acceptance 1 2 criteria as identified in ICD-19. 3 MEMBER BROWN: Dr. Dickey. 4 DR. DICKEY: Well, I guess one of my 5 pet concerns goes back to sampling, since I've 6 also been involved in looking at some of the 7 mixing problems in the tank farm, and sampling 8 of solids of rapidly-settling particles is still a variable in the tank farm because 9 10 they're using rotating pumps, and so it'll go through cycles as well. The sampling's going 11 12 to be critical. 13 MEMBER BROWN: So whether you're 14 talking about the tank farms or the vessels, it's a very challenging sampling, getting an 15 accurate sample is a challenging --16 17 DR. DICKEY: Particularly in 18 rapidly-settling particles. 19 MEMBER BROWN: Okay. One of the 20 things you said earlier, and I hope I'm not 21 falsely encouraged, but I think I understood 22 that this testing program that has gone on has

Page 184 gone--you've gotten different conclusions than 1 2 maybe what you expected, with regard to the 3 heavier particles. I thought you said that 4 they had--you didn't expect them to be, with 5 pulse jet mixers, to be drawn out of the 6 system, and I think at one time you said 7 faster than what's going in. 8 DR. DICKEY: That's very true. The 9 concern would have been that you couldn't get 10 the particles suspended long enough, or at a high enough concentration, to draw them out 11 12 during the power cycle, the power part of the 13 pulse, and what appears to happen is because 14 they are in the lower portion of the tank, and 15 they are at a higher concentration, they seem 16 to be drawn out preferentially over the small 17 particles during a typical cycle. 18 And so what was learned by the 19 testing was that when you pump the first 20 quarter of a full tank out, you pump out more 21 than the first quarter of the rapidly-22 settling particles. Matter of fact you--

Page 185 perhaps as much as half. 1 2 MEMBER BROWN: And you suggested--you said the other particles-3 4 MEMBER BROWN: And you suggested --5 you said the other particles, the smaller 6 particles were more homogeneous, so you're 7 getting pretty much--8 DR. DICKEY: Same concentration. Same concentration. 9 MEMBER BROWN: 10 That's encouraging to me. 11 DR. DICKEY: Oh, it was very 12 encouraging to me. 13 MEMBER BROWN: So it suggests to me, 14 that maybe this testing program might actually be achieving something very worthwhile and 15 16 useful. DR. DICKEY: Well, and I would add 17 18 one other comment to that. The large-scale 19 test would have been very, very difficult to, 20 shall we say, visually observe off-bottom 21 suspension. Now to PNNL's credit, they have 22 used a type of device to measure, you know,

	Page 186
1	concentration of particles sitting on the
2	bottom, and been able to correlate that with
3	the off-bottom suspension. But this matter of
4	being able to run a test, to look directly for
5	accumulation, to be able to do a pump-down and
6	see what you draw out, in the large scale, has
7	got to be a very, very powerful test, to see
8	whether you can prevent accumulation.
9	MEMBER BROWN: Dr. Kosson, can you
10	comment on changing rheological properties of
11	the waste.
12	DR. KOSSON: There is a wide variety
13	of waste composition in the tank farms, as
14	well as additives, as Dr. Peurrung mentioned,
15	and therefore the strategy of how to manage
16	the rheological properties most likely would
17	include some management of the feed vector in
18	terms of the blending strategy and the solids
19	content moving into there.
20	Part of all of this is not only
21	having acceptable targets but being able to
22	verify that you have appropriate targets, and

	that you can maintain them during actual operations. That goes very centrally to the pre-qualification program of how the waste is	
2		
	pre-qualification program of how the waste is	
3		
4	qualified, tested and analyzed, prior to going	
5	into the system, because there are certainly	
6	high degrees of uncertainty of the	
7	characteristics of the waste throughout the	
8	waste tank farm. We know there's great	
9	variability there.	
10	That is why, in our report, we	
11	emphasize the need for tracking what the pre-	
12	qualification requirements are, and to make	
13	sure that the program tracks with that, so	
14	that it can meet the actual operational	
15	constraints.	
16	MEMBER BROWN: Thank you. The other	
17	things that have to happen at the front end of	
18	this process are blending, or reducing the	
19	batch size, or returning feed, or diluting	
20	feed, or feed sampling.	
21	Any comments on the challenges for	
22	the tank farm in those areas, that you'd like	

Γ

	Page 188
1	to make?
2	DR. DICKEY: I think that some of
3	this comes out of the ability to analyze and
4	characterize the waste, ahead of its
5	processing, and to look at the things that can
6	be done. I think theremy understanding is
7	that there are opportunities, and the kinds of
8	things that have been done, as far the
9	simulants that have been used to test the
10	waste processing characteristics should, in
11	combination with the waste characteristics, be
12	possible to accomplish. The sampling's
13	probably the biggest part of it.
14	MEMBER BROWN: Dr. Peurrung.
15	DR. PEURRUNG: I'll just step in and
16	add that we have been supporting the tank
17	farms contractor, Washington River Protection
18	Solutions, on the development of an approach
19	to qualifying, certifying the waste before it
20	goes to the plant. We're actually using an
21	experimental apparatus we developed for
22	closure of issue M-1, and some of the sort of

		Page
1	ultrasonic approaches that Dr. Dickey	
2	mentioned, to look at, to ensure that material	
3	wouldn't be settling, or helping WRPS	
4	[Washington River Protection Solutions]	
5	understand how to use those technologies and	
6	then apply them for the purpose of qualifying	
7	the waste prior to transfer.	
8	MEMBER BROWN: I think Mr. Russo had	
9	mentioned earlier, that the challenges of	
10	getting a surrogate, and I would point out	
11	that most all of the discussion this morning	
12	has been about testing with surrogates.	
13	There isn't any testing with real	
14	waste, is there? Mixing? So this is the	
15	surrogate issue, that you raised, is a very	
16	important issue.	
17	Could I run through a couple quick	
18	points that I had made to myself and that	
19	maybe-	
20	DR. TRIAY: Mr. Brown	
21	MEMBER BROWN: Yes?	
22	DR. TRIAY:I believe that you	

189

	Page 190
1	asked us whether one of us wanted to make a
2	comment.
3	MEMBER BROWN: Yes. Dr. Triay,
4	please.
5	DR. TRIAY: Thank you. I just
6	wanted to emphasize a couple of things. I
7	mean, I think that you mentioned, what I think
8	that you call Plan B, you know, and I just
9	wanted to make sure that the Board understood
10	that the adding vessel inspection and hill
11	removal capacity is part of the decisions that
12	have already been made, and they are part of
13	our response.
14	But I also wanted to comment on the
15	fact that you said that the concerns of the
16	experts, you wanted to be assured, you know,
17	that we were going to take those concerns to
18	heart, as Chairman Winokur mentioned, these
19	experts that have been asked by our
20	contractor, and the Department of Energy
21	itself, to help us in ensuring success in this
22	mission.

And we would be more than willing to 1 2 put on the record, for the Board, how we are 3 addressing the issues that have been raised by 4 the experts, which we take extremely 5 seriously, and are an integral part of the 6 disciplined approach that we're taking to 7 projects with management process. So we are 8 more than willing to do that, so that you can specifically see how we are addressing those 9 10 concerns. 11 MEMBER BROWN: Thank you. Thank you. Well, I know there are a lot of experts 12 13 that you consult with. We just happen to have 14 three here. 15 Can I ask you that question, Dr. 16 Peurrung. The issues that you raised, or that 17 you're aware of, that PNNL has raised, do you 18 believe--or have you seen evidence that they are being addressed adequately by the project? 19 20 DR. PEURRUNG: I'm aware that there 21 are risk-tracking tools and things where, for 22 example, the vulnerabilities issues that we

> Neal R. Gross & Co., Inc. 202-234-4433

Page 191

	Page 192
1	raised. I'm aware that the project is
2	tracking those. I have not yet seen formal
3	resolutions of all of those comments yet, and
4	I've seen the documents but they haven't been
5	shared with me.
6	MEMBER BROWN: These are difficult
7	issues that are being addressed here, but I
8	think the first thing is some sort of
9	transparency and receptiveness on the part of
10	the person you're writing these reports for,
11	that they recognize the problems that you've
12	raised and then have done something to try and
13	address them. Whether it's adequate or not,
14	the "proof will be in the pudding." But is
15	that the general sense? or not?
16	DR. PEURRUNG: The general sense I
17	have is that the project is taking our advice
18	into consideration, and is then proceeding to
19	move forward, make their own decisions based
20	on their own judgment, and create the closure
21	packages, and so forth, that they see fit.
22	We have not been mostly operating in

	Page 193
1	a mode where we've gotten direct responses to
2	our concerns.
3	MEMBER BROWN: Thank you. Thank
4	you. Dr. Dickey.
5	DR. DICKEY: Well, I guess the
б	simple answer is if I'm still sitting there,
7	there is certainly the recognition of what the
8	EFRT commented about what's going on, and I
9	would have to say that while at times I felt
10	the response was slow, of the concerns that
11	were raised a couple of years ago, that has
12	kind of forced us into some very rapid
13	response here at the end, but the response has
14	been there. So it's a qualified yes.
15	MEMBER BROWN: Okay. Thank you.
16	Dr. Kosson.
17	DR. KOSSON: I think it's important
18	to point out that CRESP is advisory to the
19	Department of Energy and not to the
20	contractor, in the role, the way that we're
21	set up. We have provided our comments to the
22	Department of Energy, and we have not had a

	Page 194
1	formal response back from them. From past
2	history, it's been very evident that they take
3	all of our comments very seriously and
4	evaluate them.
5	But as is also documented in their
6	response to your questions, that they path
7	forward on them is not clear yet, other than
8	the fact that they're tracking them and
9	carefully considering them.
10	MEMBER BROWN: Thank you. I had a
11	number of questions here for Mr. Ashley, but
12	I'll eliminate most of them. Will this
13	testing programand that's what I'd like to
14	shift to now, the large-scale testing issue
15	will it include scope for the ability of
16	cameras to detect the presence of hills, and
17	prototypic conditions in hill removal with
18	cohesive sediments?
19	MR. ASHLEY: Yes. The design of the
20	test platform will ensure that we can test the
21	inspection, and hill dilution, and clean-out
22	capabilities of the design.

Page 195

	E
1	MEMBER BROWN: Okay. And will the
2	testing include scope for the abilityexcuse
3	me. Could I ask the experts. My three
4	experts here. The large-scale testing
5	program. What are the critical things that
6	have to come out of that program?
7	What are the gaps in understanding,
8	or that remain unresolved? And this may be
9	repetitive from what you've said before but
10	DR. PEURRUNG: We are actually asked
11	that question as part of Question 18, that was
12	directed to the laboratory, and our response
13	at the time was it dependsyou know, whether
14	to do large-scale testing, to some extent
15	depends on what you want to get out of it.
16	You know, first and foremost, I think we would
17	support additional changes to design, to try
18	to improve the robustness of the system. If
19	you believe that the primary place of
20	uncertainty resides in the scaling logs, and
21	if you are going to choose these scaling
22	factors that are perhaps not as conservative,

	Page 196
1	then you may need to do that full-scale
2	testing in order to either validate how well
3	the system does perform, make sure it
4	actuallyyour performance falls into the
5	range that you need.
6	If youif the system is more
7	robustly designed, though, the degree of
8	uncertainty that you have doesn't really
9	matter as much. And so to some extent, we
10	feel that large-scale testing may or may not
11	be needed. We would prefer to see some
12	changes made to the system.
13	That said, there are some
14	uncertainties on how some of these materials
15	behave. The scale of behavior is complex, and
16	there are areas in which, if you are limited
17	in the changes that you can make to the
18	system, you're going to have to do those tests
19	in order to forecast how the system will work,
20	and ensure that it will be adequate, or to
21	establish the envelope of operability that you
22	will have with the existing system.

Page 197 I'm sorry. One more point. 1 You 2 asked what's critical, and I believe the selection of simulants, surrogates, as you 3 4 say, is going to be critical. 5 You're going to need to be able to 6 demonstrate that this will work on tank wastes 7 that are highly heterogeneous, both from tank 8 to tank and within the tank, and we do include 9 cohesive materials as well as noncohesive materials. 10 11 MEMBER BROWN: One of the questions 12 in my mind is, I'm not sure how you can get to simulants if you don't know what you're 13 14 simulating, and I'm unclear on how well we have characterized the wastes in the tank 15 16 farms. That's a subject we'll talk about 17 later, maybe. But first, you have to understand 18 19 what you're simulating, and then you can try 20 and simulate it, and in some cases, it seems 21 to me that we don't have a really firm "handle" on the characteristics of the waste. 22

Page 198 DR. PEURRUNG: And that would 1 2 include both physical and chemical characteristics and how they vary over the 3 4 course of pre-treatment, because you're not 5 looking just at as-received waste, but also 6 waste as in process. 7 MEMBER BROWN: And Dr. Dickey, would 8 you care to comment on the objectives of 9 large-scale testing, in particular, the challenges. You talked about sampling, and is 10 11 this a critical--or how important is testing 12 the sampling capability in these large-scale 13 tests? I think sampling is 14 DR. DICKEY: 15 very, very important, but I also would have to 16 say that since, I guess, my recommendations 17 are on the line as far as the scale-up, I 18 certainly would like to have a much better 19 verification of that, since that's a real 20 opportunity here. 21 And I guess in response, that we 22 keep coming back to the simulants and the

Page 199

characteristics of it, one of the things that 1 2 I would have liked to have seen out of the MCE testing, was more with different combinations 3 4 of materials, such that we could understand--5 I'm coming at it from a mixing performance of 6 saying one of the objectives would have been 7 to define what the mixing capabilities are for 8 different particle sizes, different densities, 9 different concentrations, different degrees of cohesiveness, such that you could take any 10 waste out of the tank farm, children it, and 11 say for sure, yes, this particular mixing 12 operation can be successful. 13 14 Basically coming at it from the other direction of saying what are the 15 16 capabilities of the mixers in the WTP, and 17 then being able to take a weight sample and say yes, that could be processed. 18 19 Yes. MEMBER BROWN: From what I 20 understand, and I don't follow this as close 21 as maybe I should, but the testing program 22 hasn't, to date, hasn't had congealed wastes

Page 200 in the bottom of the tank, and then led off 1 2 the PJM to see whether it would, in fact, 3 break those up or disperse them. 4 DR. DICKEY: No; those tests were 5 run. 6 MEMBER BROWN: Were they? 7 DR. DICKEY: They actually--they 8 found out that they couldn't get the stuff to 9 settle in 24 hours, and so they actually made up samples of material with less water than 10 11 was required, and pretty much laid the stuff 12 into the tank, and got it to the point where 13 they had 200 Pascal yield stress and restarted 14 the mixers, and found out of that--I've 15 forgotten exactly which one of the vessels, 16 but they found that by firing groups of PJMs, 17 that they were able to more successfully remobilize the material. 18 19 So one or two tests, is that 20 sufficient? That's where I quess I would 21 raise the question. But it's the kind of 22 things that, no, the tests were run against

Page 201 the expected characteristics of the waste 1 2 coming out of the tank farm. 3 MEMBER BROWN: Dr. Dickey, just to 4 clarify, the tests you're talking about are 5 the tests where the increased--the decreased 6 viscosity, or if you will, the property was 7 obtained by compaction; is that correct? 8 DR. DICKEY: Not by compaction but 9 simply by allowing the yield stress--this is kind of the function of the material--to get 10 it to the point where it did have the cohesion 11 12 characteristics, even though the simulant, when allowed to settle, didn't reach that 13 14 level of cohesion. 15 It wasn't by compaction. It was 16 just by partial hydration. 17 MEMBER BROWN: Okay. Thank you. Ι agree with you. It seems to me we need--we 18 19 certainly need to look at the off-normal 20 events as in a normal fashion, I quess, in the 21 testing program, where there's nothing much to 22 lose except money and time.

Page 202 I read the EFRT reports and PNNL 1 2 reports, but I read every word of the CRESP 3 reports, and I'd like to quote a couple things 4 from the CRESP reports, just to put into the 5 record, to emphasize my concerns. 6 In July of this year, the number 7 seven letter that CRESP wrote, said that 8 "Uncertainty will remain about PJM performance 9 until extensive experience has been gained 10 through testing full-scale, prototypic PJM vessels, and actually operation of Waste 11 12 Treatment Plant." 13 The important phrase there, it seems 14 to me, "end operation of the Waste Treatment Plant." All this testing will not, because 15 16 it's simulates, really resolve all the questions, I don't think. 17 18 We want to resolve as many as 19 possible. But would you care to comment on 20 that? 21 DR. KOSSON: Yes, please. Thank 22 The testing that you do at large scale you.

	Page 203
1	would hopefully confirm that the vessels can
2	meet the functional requirements that are part
3	of the design basis for the vessels. It also,
4	you would hope, would confirm the bounding
5	functional requirements as you go through
6	them.
7	There are a lot of uncertainties
8	about the actual characteristics of the waste
9	in the tank farm, and therefore you will not
10	know, until you actually have experience, what
11	the actual margin will be between your
12	functional bounds that you have in your tanks
13	versus the nature of the wastes that you
14	desire to feed to it, based on what you pull
15	out of the tank farm.
16	At that point, if the wastes that
17	you pull out, or that you're sampling as you
18	go, are fully within the design margin that
19	you have with it, then you're fine going
20	ahead. If they're not, then you have to look
21	at options that allow you to modify the waste
22	feed to bring them within those functional

Page 204

requirements.

1

2	So there is not the ability, at this
3	time, to reduce the uncertainty of the waste
4	characterization, readily. There is a plan
5	that is evolving to reduce the uncertainty of
6	the ability of the tanks and what their
7	functional bounds are. How much you test
8	those tanks will determine how much confidence
9	you have on what the actual operational
10	margins and bounds are, as Dr. Dickey said a
11	few moments ago, and that becomes a tradeoff
12	between how you balance those.
13	But ultimately, there are going to
14	be uncertainties that you're going to have to
15	address as you understand more about those
16	wastes, and at that point, I believe that
17	having validated models helps you address that
18	without having to go back to full scale,
19	because you're going to need to have ways to
20	address uncertainties as they arise during the
21	several decades of facility operation.
22	MEMBER BROWN: Thank you. Thank

	Page 205
1	you. The other quote that I'd like to put
2	into the record is from your recommendation
3	from CRESP's. It's not Dr. Kosson's, it's
4	CRESP Recommendation No. 1. Where he
5	described full scale as one-eighth scale, or
б	larger, on a volumetric basis.
7	And the recommendation said that
8	"Near full-scale vessel testing facilities and
9	simulation capabilities should be available
10	for design confirmation, and during the full
11	life cycle of WTP operations."
12	And that's what I keyed on with Mr.
13	Russo's comment, that you are not just
14	testing, you're going to build a facility that
15	would be available for what other purposes?
16	MR. RUSSO: We're working wit the
17	tank farm right now to scope out all the
18	purposes that it could have, certainly, to
19	understand how you do the waste preparation
20	before it comes over to our facility. There
21	could be some symmetry there.
22	Again, as I mentioned earlier, the

	Page 206
1	whole mockup on operator training, you know,
2	that facility, after we're done testing, would
3	have real value to people who have to go in
4	and operate within the plant, in the real
5	plant, after it's fully operational.
6	So those are a couple of examples
7	that we would take out of the CRESP report, as
8	how we would want to utilize it. I'd like to
9	defer to Greg for a second, cause I think he
10	can give you a more detailed summary of some
11	of those things since he's working them
12	realtime.
13	MEMBER BROWN: Thank you. Mr.
14	Ashley.
15	MR. ASHLEY: Yes. We have formed a
16	team with the tank farm and are doing some of
17	the early planning, to determine, you know,
18	what the purpose of the test is. Obviously,
19	you never run a test until you first identify
20	what gaps you're trying to fill. We have
21	taken all of the expert suggestions,
22	recommendations, issues and concerns, and

		Page	207
1	applied those in a matrix fashion, to		
2	determine which ones could be addressed		
3	MEMBER BROWN: Will that be		
4	available to us?		
5	MR. ASHLEY: We'll make that		
6	available to you. Absolutely. We apply that		
7	in a matrix fashion to determine what a large-		
8	scale test could do in terms of advancing our		
9	knowledge of how these mixing systems will		
10	perform during the operation of the facility.		
11	We're also looking at that facility also		
12	providing information relative to tank		
13	transfers.		
14	We're looking at, really, what are		
15	the edgesand I think Dr. Dickey pointed out-		
16	-what are the edges of operation? What are		
17	the true margins that we would expect. Once		
18	again, that's based on simulants but it		
19	provides a better understanding, during		
20	operation, of the margins that will be		
21	available.		
22	There also has been discussionand		

Page 208 everybody talks about the risks being on the 1 2 underestimation, or overestimating 3 performance. There also is the opportunity 4 associated with this large-scale test, Our 5 simulants have been in water, in effect, particles in water, so be believe also that 6 7 there is the opportunity to show that, through 8 this testing, that we actually have additional 9 margin as opposed to what we have currently determined through our testing and through the 10 11 assessments that we performed. 12 MEMBER BROWN: Thank you. Mr. Chairman, I have three more 13 14 questions, if that's all right. 15 CHAIRMAN WINOKUR: Yes. Fine. 16 MEMBER BROWN: Okay. The first one 17 will be for Mr. Knutson, then Mr. Sain, and 18 then Dr. Triay. 19 Mr. Knutson, much has been made of 20 this pivoting of the project. I haven't seen 21 the project move, in any way, so I'm not sure 22 what--what I understand the pivoting is, is a-

		Page	209
1	-well you tell me what "pivoting" means.		
2	MR. KNUTSON: Thank you, Mr. Brown.		
3	I think it's important for people to recognize		
4	that projects of this scale need to actively		
5	transition from engineering through		
б	construction, to commissioning, to operations.		
7	There's a tremendous amount of inertia and		
8	momentum that has to be built, to be able to		
9	make those transitions occur effectively.		
10	What I mean by "pivoting" is that		
11	this project has been in the engineering and		
12	construction phase for a decade, and it is now		
13	time to start adding the piece called		
14	commissioning, and ultimately start up and		
15	readiness for operation. That's the pivot		
16	that I envision as part of this pivoting		
17	message.		
18	MEMBER BROWN: Thirty years of my		
19	childhood was spent in the Navy and I was on		
20	three commissioning crews of ships, and		
21	throughout the building of those ships, we had		
22	operators standing there, doing the testing		

		Page
1	program, doing the planning, the operations.	
2	It seems to me that it's very important that	
3	you focus onat some point in time you've got	
4	to focus on operating this plant, the	
5	operating procedures, the training of those	
6	operators, and such.	
7	I mean, how far out are we until the	
8	plant becomes operational, at this point?	
9	MR. KNUTSON: I think it's very	
10	important for the record to show that there	
11	are portions of the facility that will	
12	transition to operations as early as 2012.	
13	Things like the motor control centers and some	
14	of the switch gear buildings will become	
15	operationally ready in the next couple of	
16	years. So we are immediately upon that time.	
17	MEMBER BROWN: Do you have the	
18	operating procedures written for those	
19	facilities that will come online in 2012?	
20	MR. KNUTSON: We have the plan and	
21	the schedule associated for bringing those	
22	facilities online in 2012, and it includes	

210

		Page
1	operating procedures, the training	
2	requirements, and the start-up and	
3	commissioning responsibilities, that have to	
4	be translated into people.	
5	MEMBER BROWN: But those procedures	
6	aren't written today?	
7	MR. KNUTSON: I'll defer the public	
8	record to answer that specific, with a	
9	detailed date.	
10	MEMBER BROWN: Yes. I'd be	
11	interested in where we're at in the timeline	
12	of developing, writing procedures which can	
13	then be validated in the plant by the	
14	operators actually going out and putting their	
15	hands on the breakers and valves, and things.	
16	MR. KNUTSON: My point, for the	
17	record, was to make sure that everyone	
18	recognizes that it is not too late. It's not	
19	too early. It's time. It is time to be doing	
20	that now, not waiting far into the future.	
21	MEMBER BROWN: Thank you. Thank	
22	you. Let's see. Mr. Sain.	

211

Page 212 1 MR. SAIN: Yes? 2 MEMBER BROWN: A quick question, 3 kind of in preparation for the next session. But from the point of view of the tank farm 4 5 operator, what is the ideal waste acceptance 6 criteria? 7 MR. SAIN: Well, the ideal waste 8 acceptance criteria is on that you can meet. 9 But--I couldn't resist that. And let me give 10 you a perspective because, you know, this isn't the first time that I've personally 11 12 heard a lot about, you know, what we know about the waste in the tank farm, and I'll 13 14 remind you that I have a lot of experience at Savannah River. 15 16 MEMBER BROWN: How many years were 17 you at Savannah River? 18 MR. SAIN: I've been at Savannah 19 River, on and off, for almost 20 years. I was 20 actually there at the site for 12 years. And 21 you know, that's the site that had a PUREX 22 [Plutonium Uranium Extraction] process. Ιt

 was certainly PUREX here. A lot of similarities. I can tell you that we dispos ofand the Board knows thisTank 17-1 and 	
2 similarities. I can tell you that we dispos	
3 ofand the Board knows thisTank 17-1 and	
	F,
4 which is the tank of to the tank farm.	
5 We're disposing of some plutonium to the tan	k
6 farm, and, you know, we seem very capable of	
7 being able to mix sludge batches and feed DW	PF
8 [Defense Waste Processing Facility], and kno	W
9 what we're sending to DWPF.	
10 And I propose, that as a company,	
11 you know, we have provided that expertise to	
12 the tank farm at Hanford. We'll continue to	
13 do that, that is my job, and we, I believe,	
14 know a lot more about characterization of th	e
15 waste in TOC [Tank Operations Contract] at	
16 Hanford than is probably understood at this	
17 time. And hopefully, later today, as we get	
18 into some of that, Paul will be able to go	
19 through some of that.	
20 But obviously we need to know what	' S
21 in the waste that we're going to send to WTP	•
22 We need a waste acceptance criteria that's	

Page 2141feasible to be met from the standpoint of2criticality. You've already been talking3about that. I agree, totally, that for a plant4like this, it's got to be credible.5You know, I'm very familiar with6sending to a plant-7MEMBER BROWN: If I could interrupt8for a second.9MR. SAIN: Yes?10MEMBER BROWN: How manythe11chairman mentioned single-shell tanks and12leaking single-shell tanks at Hanford, in his13opening comments. How many of those single-14shell tanks have been emptied at Hanford?15MR. SAIN: I don't know the answer16to that.17MEMBER BROWN: Okay.18MR. SAIN: But we certainly have19people here that can answer that.20MEMBER BROWN: Okay. And I guess my21last question is for Dr. Triay. I'm sorry to22interrupt. We'll catch up with you, I'm sure,				
2 criticality. You've already been talking 3 about that. I agree, totally, that for a plant 4 like this, it's got to be credible. 5 You know, I'm very familiar with 6 sending to a plant- 7 MEMBER BROWN: If I could interrupt 8 for a second. 9 MR. SAIN: Yes? 10 MEMBER BROWN: How manythe 11 chairman mentioned single-shell tanks and 12 leaking single-shell tanks at Hanford, in his 13 opening comments. How many of those single- 14 shell tanks have been emptied at Hanford? 15 MR. SAIN: I don't know the answer 16 to that. 17 MEMBER BROWN: Okay. 18 MR. SAIN: But we certainly have 19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to		I	Page	214
3 about that. I agree, totally, that for a plant 4 like this, it's got to be credible. 5 You know, I'm very familiar with 6 sending to a plant- 7 MEMBER BROWN: If I could interrupt 8 for a second. 9 MR. SAIN: Yes? 10 MEMBER BROWN: How manythe 11 chairman mentioned single-shell tanks and 12 leaking single-shell tanks at Hanford, in his 13 opening comments. How many of those single- 14 shell tanks have been emptied at Hanford? 15 MR. SAIN: I don't know the answer 16 to that. 17 MEMBER BROWN: Okay. 18 MR. SAIN: But we certainly have 19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to	1	feasible to be met from the standpoint of		
4like this, it's got to be credible.5You know, I'm very familiar with6sending to a plant-7MEMBER BROWN: If I could interrupt8for a second.9MR. SAIN: Yes?10MEMBER BROWN: How manythe11chairman mentioned single-shell tanks and12leaking single-shell tanks at Hanford, in his13opening comments. How many of those single-14shell tanks have been emptied at Hanford?15MR. SAIN: I don't know the answer16to that.17MEMBER BROWN: Okay.18MR. SAIN: But we certainly have19people here that can answer that.20MEMBER BROWN: Okay. And I guess my21last question is for Dr. Triay. I'm sorry to	2	criticality. You've already been talking		
5 You know, I'm very familiar with 6 sending to a plant- 7 MEMBER BROWN: If I could interrupt 8 for a second. 9 MR. SAIN: Yes? 10 MEMBER BROWN: How manythe 11 chairman mentioned single-shell tanks and 12 leaking single-shell tanks at Hanford, in his 13 opening comments. How many of those single- 14 shell tanks have been emptied at Hanford? 15 MR. SAIN: I don't know the answer 16 to that. 17 MEMBER BROWN: Okay. 18 MR. SAIN: But we certainly have 19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to	3	about that. I agree, totally, that for a plant		
 sending to a plant- MEMBER BROWN: If I could interrupt for a second. MR. SAIN: Yes? MEMBER BROWN: How manythe chairman mentioned single-shell tanks and leaking single-shell tanks at Hanford, in his opening comments. How many of those single- shell tanks have been emptied at Hanford? MR. SAIN: I don't know the answer to that. MEMBER BROWN: Okay. MR. SAIN: But we certainly have people here that can answer that. MEMBER BROWN: Okay. And I guess my last question is for Dr. Triay. I'm sorry to 	4	like this, it's got to be credible.		
 MEMBER BROWN: If I could interrupt for a second. MR. SAIN: Yes? MEMBER BROWN: How manythe chairman mentioned single-shell tanks and leaking single-shell tanks at Hanford, in his opening comments. How many of those single- shell tanks have been emptied at Hanford? MR. SAIN: I don't know the answer to that. MEMBER BROWN: Okay. MR. SAIN: But we certainly have people here that can answer that. MEMBER BROWN: Okay. And I guess my last question is for Dr. Triay. I'm sorry to 	5	You know, I'm very familiar with		
8 for a second. 9 MR. SAIN: Yes? 10 MEMBER BROWN: How manythe 11 chairman mentioned single-shell tanks and 12 leaking single-shell tanks at Hanford, in his 13 opening comments. How many of those single- 14 shell tanks have been emptied at Hanford? 15 MR. SAIN: I don't know the answer 16 to that. 17 MEMBER BROWN: Okay. 18 MR. SAIN: But we certainly have 19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to	6	sending to a plant-		
9MR. SAIN: Yes?10MEMBER BROWN: How manythe11chairman mentioned single-shell tanks and12leaking single-shell tanks at Hanford, in his13opening comments. How many of those single-14shell tanks have been emptied at Hanford?15MR. SAIN: I don't know the answer16to that.17MEMBER BROWN: Okay.18MR. SAIN: But we certainly have19people here that can answer that.20MEMBER BROWN: Okay. And I guess my21last question is for Dr. Triay. I'm sorry to	7	MEMBER BROWN: If I could interrupt		
10MEMBER BROWN: How manythe11chairman mentioned single-shell tanks and12leaking single-shell tanks at Hanford, in his13opening comments. How many of those single-14shell tanks have been emptied at Hanford?15MR. SAIN: I don't know the answer16to that.17MEMBER BROWN: Okay.18MR. SAIN: But we certainly have19people here that can answer that.20MEMBER BROWN: Okay. And I guess my21last question is for Dr. Triay. I'm sorry to	8	for a second.		
11 chairman mentioned single-shell tanks and 12 leaking single-shell tanks at Hanford, in his 13 opening comments. How many of those single- 14 shell tanks have been emptied at Hanford? 15 MR. SAIN: I don't know the answer 16 to that. 17 MEMBER BROWN: Okay. 18 MR. SAIN: But we certainly have 19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to	9	MR. SAIN: Yes?		
 leaking single-shell tanks at Hanford, in his opening comments. How many of those single- shell tanks have been emptied at Hanford? MR. SAIN: I don't know the answer to that. MEMBER BROWN: Okay. MR. SAIN: But we certainly have people here that can answer that. MEMBER BROWN: Okay. And I guess my last question is for Dr. Triay. I'm sorry to 	10	MEMBER BROWN: How manythe		
 opening comments. How many of those single- shell tanks have been emptied at Hanford? MR. SAIN: I don't know the answer to that. MEMBER BROWN: Okay. MR. SAIN: But we certainly have people here that can answer that. MEMBER BROWN: Okay. And I guess my last question is for Dr. Triay. I'm sorry to 	11	chairman mentioned single-shell tanks and		
<pre>14 shell tanks have been emptied at Hanford? 15 MR. SAIN: I don't know the answer 16 to that. 17 MEMBER BROWN: Okay. 18 MR. SAIN: But we certainly have 19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to</pre>	12	leaking single-shell tanks at Hanford, in his		
 MR. SAIN: I don't know the answer to that. MEMBER BROWN: Okay. MR. SAIN: But we certainly have people here that can answer that. MEMBER BROWN: Okay. And I guess my last question is for Dr. Triay. I'm sorry to 	13	opening comments. How many of those single-		
<pre>16 to that. 17 MEMBER BROWN: Okay. 18 MR. SAIN: But we certainly have 19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to</pre>	14	shell tanks have been emptied at Hanford?		
 MEMBER BROWN: Okay. MR. SAIN: But we certainly have people here that can answer that. MEMBER BROWN: Okay. And I guess my last question is for Dr. Triay. I'm sorry to 	15	MR. SAIN: I don't know the answer		
 18 MR. SAIN: But we certainly have 19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to 	16	to that.		
19 people here that can answer that. 20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to	17	MEMBER BROWN: Okay.		
20 MEMBER BROWN: Okay. And I guess my 21 last question is for Dr. Triay. I'm sorry to	18	MR. SAIN: But we certainly have		
21 last question is for Dr. Triay. I'm sorry to	19	people here that can answer that.		
	20	MEMBER BROWN: Okay. And I guess my		
22 interrupt. We'll catch up with you, I'm sure,	21	last question is for Dr. Triay. I'm sorry to		
	22	interrupt. We'll catch up with you, I'm sure,		

i	
	Page 215
1	in a few minutes. But could you confirm for
2	me that DOE is committed to this large-scale
3	testing program that's been described by Mr.
4	Russo and others.
5	DR. TRIAY: Absolutely. The
6	Department of Energy has committed to the
7	large-scale testing. As a matter of fact,
8	it's part of our response. The schedule that
9	has been given by Mr. Russo is the schedule of
10	the Department of Energy.
11	And I'd just like to make absolutely
12	certain that we all understand that the
13	Department of Energy is extremely committed to
14	addressing the concerns that have been
15	expressed, that we have a strategy that
16	consists of a disciplined phased approach, and
17	fidelity to the technology readiness
18	assessment process.
19	And we have had independent
20	verification that we are moving in to close
21	this issue in a viable and effective manner.
22	And I really want to make sure that the Board

Page 216 understands that the concerns that are 1 2 expressed by our experts, and the amount of 3 expertise that the secretary, and the deputy 4 secretary, have asked the entire complex to 5 support the Waste Treatment Plant with, is 6 something that will lead to a successful tank 7 waste cleanup. 8 MEMBER BROWN: Thank you, Dr. Triay. 9 Mr. Chairman, that concludes my 10 questions. 11 CHAIRMAN WINOKUR: Thank you. We're 12 going to move on to the next panel in a 13 moment. I'd like to just ask one or two brief 14 questions. I think Mr. Bader has one. You said a few things here, Dr. 15 16 Dickey, that I probably just don't understand. 17 But it's very important that there's no 18 accumulations in these vessels; right? That's 19 a key feature. No accumulation of solids in 20 the vessels. 21 DR. DICKEY: That's the top of my 22 list.

Page 217

	Pa
1	CHAIRMAN WINOKUR: And you talked
2	about the pump-down test, about the fact that
3	you were surprised that the denser, the
4	heavier particles were swept out quickly, and
5	you saidand I may have misunderstoodthat
6	they were like preferentially taken out of the
7	system, right?
8	DR. DICKEY: Yes.
9	CHAIRMAN WINOKUR: And so my
10	simplistic thinking is they were taken out
11	because they were down there.
12	DR. DICKEY: That's right.
13	CHAIRMAN WINOKUR: So it's very hard
14	for me to follow the reasoning here, where,
15	based on that testing, we're not going to have
16	serious concerns about solids accumulations at
17	the bottom of these vessels, because when I
18	look at the pump-down data, it doesn't go to
19	zero. I mean, there's something left over.
20	DR. DICKEY: Yes, but it's a lower
21	concentration of what's left over. You're
22	taking out more than you put in, which as long

Page 218 as everything's moving on the bottom, it may 1 2 not come out in this batch but it will the 3 next. 4 CHAIRMAN WINOKUR: Yes. 5 DR. DICKEY: You're not accumulating. That's the critical factor. 6 7 There's not stuff being left behind from the 8 previous batch, and in effect what ends up 9 happening, is you're actually putting material 10 in that actually has a higher concentration of what's left in there. 11 12 CHAIRMAN WINOKUR: And I think some 13 of the things Dr. Mansfield was getting at, if 14 we were thinking about a 40 foot diameter 15 tank, a big tank, I mean, is there the 16 opportunity, in your opinion, that there could be regions where, if you can't adequately 17 18 suspend these particles, that you're not going 19 to begin to get accumulation of solids down 20 there? 21 DR. DICKEY: Well, this gets back to 22 the fact that what you're trying to do is to

Page 219 make sure that everything is moving, and 1 2 that's your bottom motion throughout the entire vessel. You don't have a place where 3 4 the material is not ultimately swept up into 5 the flow of the mixer. It may circulate out at the perimeter for three or four batches. 6 7 But that's not saying that it's staying in 8 there permanently and it's not saying that 9 it's accumulating. 10 CHAIRMAN WINOKUR: All right. Thank 11 you. One more quick question for you, Mr. Ashley. I guess the LOAM model is really what 12 you used, in the end, to do calculations to 13 14 close the M-3 issue. Is that correct? 15 MR. ASHLEY: As I mentioned 16 earlier, that was one of the assessment tools that we used as the LOAM model, and that was 17 18 for evaluation of accumulation, solids 19 accumulation. 20 CHAIRMAN WINOKUR: And embedded into 21 this equation is .18 scaling factor. Is that-22

Page 220 MR. ASHLEY: No. There is no 1 2 scaling embedded in the LOAM model. 3 CHAIRMAN WINOKUR: There isn't? 4 MR. ASHLEY: The LOAM actually uses 5 the actual test velocities and evaluates 6 against the actual tested velocities. It does 7 not use scale velocities. 8 CHAIRMAN WINOKUR: All right. Thank 9 you very much. And Joe, do you have a question? Mr. Bader. 10 11 MEMBER BADER: Yes. A quick 12 question for Mr. Russo. When will the 13 detailed large-scale testing program be 14 available to review? Hopefully, in a near final but not final draft, please. 15 16 MR. RUSSO: So again, I think the 17 key element of answering your question is to 18 get to a scope definition that we can get at 19 least consensus on amongst our experts. 20 Assuming that takes us about a month to two 21 months to achieve that, and we would have to 22 bring them all together and work that very

Page 221

1 hard, to get that done.

2	The second element would then be
3	defining the physical properties that would be
4	needed in the equipment. We could have that
5	done in short order. I would tell you, a
6	first draft of something that we have
7	consensus on, without agreement on simulant
8	necessarily, at that point, could be done
9	within three to four months.
10	And then while we're going and doing
11	the physical work to solicit the tank, find
12	the tank, get the equipment installed, we
13	would have to work with all due haste to get
14	that simulant defined because getting the
15	physical simulant made, once it's defined, is
16	another long pole in the cycle.
17	So a schedule nominally within a
18	couple a months, and then an overall
19	definitive plan, when we know the lead time of
20	the simulant, would be probably within ten
21	months.
22	MEMBER BADER: Presumably, you would

Page 222 test a number of simulants. 1 2 MR. RUSSO: Absolutely. One of the questions is just how you would set up your 3 4 simulant suite to get to a test result that 5 people can look at and say we have significantly reduced the risk. 6 7 MEMBER BADER: Thank you. I have 8 one question for Dr. Triay, and for Mr. 9 Knutson. You've heard the discussions. 10 You've heard statements, just recently, from 11 12 Dr. Dickey and Dr. Kosson, about testing the 13 mixing, to see what it's capable of, and then 14 matching batches against that from Dr. Dickey. You've heard a statement from Dr. Kosson about 15 16 the possibility of needing to modify the feed 17 to accommodate what you see as a result of the 18 full-scale testing. 19 How would you--at the highest level, 20 how would you summarize what you've been 21 hearing in terms of the capability of the 22 Waste Treatment Plant as defined by the full-

		Page	223
1	scale testing?		
2	Mr. Knutson, would you like to-		
3	MR. KNUTSON: Dr. Bader, if you		
4	could just repeat that last bit. There was		
5	quite a preamble that led to that and I'm		
6	trying to keep it all in context for that last		
7	bit, of what the question is actually focusing		
8	on.		
9	MEMBER BADER: By the time the full-		
10	scale testing is completed, and I'm assuming		
11	you'll find a few things that needs to extend		
12	it, and things like that, you're going to be		
13	very close to hot functional testing.		
14	And we've already heard statements,		
15	that it will be very difficult to make any		
16	major modification to the plant at that point.		
17	How are you going to relate what you see from		
18	the full-scale testing to the capacity and		
19	capability of the plant?		
20	MR. KNUTSON: Okay. So I think it's		
21	important for us to recognize that we will not		
22	be close to hot testing, and in the process of		

completing the elements of the large-scale 1 2 test that are critical for design or for 3 evolving the criticality safety report. We 4 will be in approximately three years of a 5 window for commissioning of--or hot 6 commissioning of the pre-treat facility. 7 I characterize the path forward as 8 one in which we recognize that there are five large facilities associated with this project, 9 10 pre-treat being one of them, pre-treat being one that is a very complex facility. 11 12 We characterize that the risks and the issues associated with the concerns that 13 14 have emerged from our experts are important 15 and they've been recognized, they've been 16 tracked, they've been captured in our risk 17 registries. I believe our external experts 18 associated with project management have evaluated the risk registries and have 19 20 identified it as best in class, in terms of 21 its ability to characterize and keep track of 22 what the issues are and how that relates to

> Neal R. Gross & Co., Inc. 202-234-4433

Page 224

implementation of the baselines, and its 1 2 effect on cost and schedule. 3 I believe it's also important, for 4 the record, to show that there has been no 5 disagreement amongst the experts, that for a 6 vast majority of the wastes, the PJM systems 7 are going to work just fine. There are 8 elements of sludge and heavier particle distributions for which there is some 9 discussion and some legitimate concern. 10 And we need to be able to continue 11 12 to focus on that. We need to be able to 13 address it. And that's what the large-scale 14 testing program is set up to do. The testing 15 program is aligned with the design schedule, 16 so that outputs from the large-scale testing 17 do dovetail with the design schedule, and our 18 job is, as the Department of Energy, and 19 certainly as the federal project director, is 20 to make sure that that alignment remains 21 robust. 22 So if you saw test MEMBER BADER:

> Neal R. Gross & Co., Inc. 202-234-4433

Page 225

	Page 226
1	results that indicated you needed to modify
2	the internals of the vessel, you feel there is
3	still time to do it?
4	MR. KNUTSON: I do; yes.
5	MEMBER BADER: Interesting. Would
6	you also look at the option of resolving the
7	issue by doing something else on the tank
8	farms? Would that be one of your
9	alternatives?
10	MR. KNUTSON: I don't have the
11	opportunity to look beyond what I currently
12	have in my plan. I can tell you that simply
13	throwing things over the fence into the tank
14	farms is not a particularly useful solution,
15	because, ultimately, it comes back around to
16	the issues of being able to commission, start
17	up and operate. But based on the four months
18	that we've been able to work together to
19	understand what the issues are between the
20	Waste Treatment Plant and the tank farms, the
21	issues of our waste acceptance criteria and
22	the feedstream deliveries from the tank farms

	Page 227
1	appear to be a very solid, very robust
2	relationship, that can be implemented on the
3	timelines that we're asking for.
4	MEMBER BADER: Let me ask Mr. Sain
5	one last question. I remember a discussion we
6	had, years ago, and you said the tank farms
7	solves the sins of the plants that are built
8	to treat the waste. Does that still hold?
9	MR. SAIN: It's definitely a complex
10	business. But I think it's one that we
11	clearly understand. Having responsibility,
12	URS for Savannah River and Hanford, and been
13	a good working relationship with Frank at WTP,
14	I think really pays off.
15	MEMBER BADER: Mr. Chairman, I'll
16	stop there.
17	CHAIRMAN WINOKUR: All right. Thank
18	you very much. I'd certainly like to thank
19	you, Dr. Peurrung, Dr. Dickey, Dr. Kosson. I
20	appreciate your time, appreciate your
21	insights. They were invaluable. I though it
22	was a great exchange. I learned a lot and I'm

	Page	228
sure all the Board members did.		
So that was wonderful. And I know		
we're going to be dismissing you, Mr. Russo,		
you, Mr. Ashley, and I think the others will		
unfortunately have to stay for a while longer.		
But we're going to call up the		
second panel now, and that panel would include		
the addition of Mr. Brockman, who's the		
manager of DOE's Office of River Protection;		
Ms. Stacy Charboneau, who we heard from		
before, who's the assistant manager of the		
tank farms project in the Office of River		
Protection; and Mr. Paul Rutland, who is the		
mission analysis and strategic planning		
manager for Washington River Protection		
Solutions.		
MEMBER BROWN: Mr. Chairman, while		
we're waiting, do you mind if I ask two		
follow-up questions to Mr. Knutson about		
follow-up to Mr. Bader's comments.		
CHAIRMAN WINOKUR: Let's let		
everybody get seated here for one second and		
	So that was wonderful. And I know we're going to be dismissing you, Mr. Russo, you, Mr. Ashley, and I think the others will unfortunately have to stay for a while longer. But we're going to call up the second panel now, and that panel would include the addition of Mr. Brockman, who's the manager of DOE's Office of River Protection; Ms. Stacy Charboneau, who we heard from before, who's the assistant manager of the tank farms project in the Office of River Protection; and Mr. Paul Rutland, who is the mission analysis and strategic planning manager for Washington River Protection solutions. MEMBER EROWN: Mr. Chairman, while we're waiting, do you mind if I ask two follow-up questions to Mr. Knutson about follow-up to Mr. Bader's comments. CHAIRMAN WINOKUR: Let's let	<pre>sure all the Board members did. So that was wonderful. And I know we're going to be dismissing you, Mr. Russo, you, Mr. Ashley, and I think the others will unfortunately have to stay for a while longer. But we're going to call up the second panel now, and that panel would include the addition of Mr. Brockman, who's the manager of DOE's Office of River Protection; Ms. Stacy Charboneau, who we heard from before, who's the assistant manager of the tank farms project in the Office of River Protection; and Mr. Paul Rutland, who is the mission analysis and strategic planning manager for Washington River Protection Solutions. MEMBER BROWN: Mr. Chairman, while we're waiting, do you mind if I ask two follow-up questions to Mr. Knutson about follow-up to Mr. Bader's comments. CHAIRMAN WINOKUR: Let's let </pre>

Page 229 1 you can do that. 2 Okay. 3 MEMBER BROWN: Mr. Knutson, you made 4 the comment, a couple seconds ago, that the 5 majority of the experts agree that -- or don't 6 disagree that most of the waste, or some large 7 fraction of the waste can be adequately 8 handled with the PJMs as they are. I think 9 that--is that what you said, or did I misquote 10 you? MR. KNUTSON: Well, there may be an 11 12 oversimplification in there, but I believe 13 that there is a large fraction of the waste 14 that needs to be treated from the tank farms, for which the PJMs, and the design of the 15 Waste Treatment Plant, right now, are--is not 16 17 controversial. 18 Do you have any idea MEMBER BROWN: 19 of what percentage that is? 20 MR. KNUTSON: I'll defer to other 21 experts for that, but perhaps Greg Ashley 22 could answer that as part of the public record

Page 230

1 and as deferred question.

	-
2	MEMBER BROWN: Okay. And the other
3	thing, we've talked about the large-scale
4	testing and Mr. Bader asked would you be able
5	to make changes to the PJMs, etcetera, and you
6	said yes.
7	It seems to me there'd have to be
8	pretty rigid metrics along the way, if the
9	intent is that you allow yourself enough time
10	before the vessels are in place, or finished,
11	to make changes.
12	Have you got a set of rigid metrics
13	in your own mind, or that this has to be
14	achieved in the testing program in order to go
15	forward, or it raises an alarm that you are
16	not going to be able to complete the testing
17	adequately, to then make changes?
18	MR. KNUTSON: My comment comes from
19	the perspective that, I think as the Board
20	recognizes, we have another construction
21	project review coming up in November, and one
22	of the expectations of that construction

		Page 231
1	project review is that we would have	
2	restructured the way we approach the	
3	operational readiness review process.	
4	We would have restructured the way	
5	we looked at facility start-up and	
6	commissioning on parts of the project that	
7	aren't pre-treat, and by doing that, provide	
8	ourselves additional time for dealing with	
9	issues such as a surprise in the large vessel	
10	test activities that support pre-treat.	
11	By doing that, we're able to work a	
12	large fraction of the issues well off the	
13	critical path. It's a very significant	
14	opportunity that the project should realize,	
15	and it allows us to provide another window of	
16	opportunity to deal with topics of	
17	uncertainty, should such a negative risk event	
18	occur.	
19	MEMBER BROWN: So a critical path	
20	has been identified for this large-scale	
21	testing?	
22	MR. KNUTSON: I won't go so far as	

	Page 232	
1	to say a critical path for large-scale	
2	testing. I can say that the near-term	
3	activities are directly tied to the design	
4	activities that require the input.	
5	MEMBER BROWN: Thank you Mr.	
6	Chairman. That's all my questions.	
7	CHAIRMAN WINOKUR: Dr. Mansfield.	
8	MEMBER MANSFIELD: Thank you, Mr.	
9	Chairman. First, I'd like to set the stage,	
10	I'd like you to describe a bit about how the	
11	tank farms are going to have to operate.	
12	You're going to have to prepare waste batches,	
13	and it's the sludge batches I'm most worried	
14	about, because those are the ones that aren't	
15	necessarily easy to process.	
16	You'll need to dilute them; right?	
17	So you'll have tofirst, you have to get them	
18	out of the tank; right? Do you have to dilute	
19	them to do that?	
20	MS. CHARBONEAU: The plans, as they	
21	are today, are essentially that we will have	
22	a set number of what we will call staging	

Page 233 tanks to feed the WTP, and for the sludge, in 1 2 particular, the tanks that we have in mind 3 currently have a quantity of sludge in them or 4 we'll plan to have a quantity of sludge in 5 them such that the amount of sludge in those 6 waste tanks will be mixed. And I don't know 7 if "dilute" is the right answer for that. 8 Basically, the amount of sludge in 9 that material, we will add the appropriate 10 amount of supernate to motivate that sludge. 11 MEMBER MANSFIELD: Okay. You'll add supernate. These will be single-shell tanks; 12 13 right? 14 MS. CHARBONEAU: No. I'm sorry. The feed tanks for WTP are double-shell tanks. 15 16 MEMBER MANSFIELD: Okay. So all of 17 the sludge is in double-shell tanks now? 18 MS. CHARBONEAU: No; it is not. So we have many years of retrieval activities --19 20 MEMBER MANSFIELD: So you're going 21 to retrieve it from the single-shell tanks, to 22 get it--to retrieve it, you've got to dilute

Page 234 it to move it, don't you? 1 2 MS. CHARBONEAU: For those--MEMBER MANSFIELD: 3 The sludge--4 MS. CHARBONEAU: A couple answers. 5 MEMBER MANSFIELD: The so-called 6 peanut butter sludge. 7 Right. MS. CHARBONEAU: So for 8 those tanks that are, I'll say sound, single-9 shell tanks, we add supernate to motivate that sludges, or salt cake, quite frankly, and for 10 11 those that are assumed leakers, we actually 12 add very little liquid to those tanks, and 13 right now, we're designing a system that's an 14 eductor system. So very small quantities of liquid will be added for those tanks. 15 16 MEMBER MANSFIELD: Okay. So this 17 will end up in a staging tank where you're 18 going to now have to do things to do it, to 19 make it meet waste acceptance criteria. Do 20 you have any line-plugging problems when 21 you're moving this sludge around? 22 Currently, today, MS. CHARBONEAU:

	Page 235
1	we do not experience line-plugging problems.
2	It's pretty low, the percent solids that we're
3	moving today.
4	MEMBER MANSFIELD: These are going
5	to beokay. But in the future, are you going
6	towill the waste be sufficiently dilute,
7	that you won't have some of the line-plugging
8	problems that sometimes happen with less
9	dilute material?
10	MS. CHARBONEAU: I'll defer to Paul
11	in a second, but we have the ability to flush
12	lines, should we have a line-plugging issue
13	within the tank farms, as we're retrieving
14	waste or moving waste between our single-shell
15	and double-shell tanks. Paul, if you had
16	something to add.
17	MR. RUTLAND: Our integrated grade
18	waste feed delivery strategy has been evolving
19	over the two year since we've taken over the
20	tank farm contract. Initially, when we took
21	over the tank farm contract, the plan, at that
22	time, including in System Plan Rev 3, was to

Page 236 pile waste into tanks up to 200 inches, and 1 2 try to retrieve and feed from those tanks to 3 the WTP. Our initial assessment, when we took 4 over the job, was that we didn't believe you 5 could mobilize that amount of sludge in a 6 double-shell tank system. 7 So in our integrated waste feed 8 delivery plan, we have identified five HLW 9 [High-level Waste] tanks that we are calling our waste feed staging tanks, and those tanks 10 will stage approximately 70 inches of sludge, 11 which, if you do the rough math, basically 12 correlates to about 16 weight percent solids 13 14 that we'll be feeding to the WTP. 15 MEMBER MANSFIELD: Directly? 16 MR. RUTLAND: From those staging 17 tanks; yes. The key thing to remember is that 18 the sludge that is in those tanks will be a 19 combination of sludges that we've mixed 20 together, and blended together, in order to 21 produce a batch for the WTP. So we've tried, 22 we've recognized the issues that we had with

Page 237 mobilizing large layers of sludge in DSTs 1 2 [Double Shell Tanks]. We've identified that We've addressed it in our waste feed 3 issue. 4 delivery strategy, such, that we're only now 5 planning on having batches of 70 inches in those five staging tanks for the WTP. 6 7 So your dilution question is one of, 8 we believe when we have created the batch, we 9 will be at the feed concentrations that's 10 necessary to meet the WAC for the WTP. 11 To answer your line-plugging issue, currently, we don't have any issues with that 12 going on in the tank farm, either in our 13 14 retrieval systems, or in our transfer systems. 15 Previous issues with plugging at the Hanford 16 site primarily dealt with phosphate, phosphates being, gels being formed in 17 18 transfers due to not controlling the chemistry 19 of the waste appropriately. 20 Our waste compatibility program now 21 controls that, where we stay away from those 22 areas where you may have those line-plugging

	Page
1	regimes with phosphate, and we do not believe
2	that we'll have any trouble in transporting
3	the waste to the tank farm. We have no
4	evidence today, that we have any line-plugging
5	in the transfers that we're doing today. We
6	don't believe that we'll have significant
7	settling in our lines.
8	Our design criteria for our waste
9	transfer system is six feet per second for a
10	linear velocity in our pipes, so we are a
11	little bit above the velocity that's in the
12	WTP in our transfer system, because we will
13	probably be transferring around more
14	concentrated sludges than you would see in the
15	WTP.
16	So our linear velocity that we
17	require in our pipes is higher. So we don't
18	believe we'll have plugging in the lines in
19	the tank farm.
20	CHAIRMAN WINOKUR: I'm going to ask
21	the Board members to try to keep their
22	questions in the range of ten minutes as we go

238

	Page 239
1	through this, so that we can, you know, finish
2	up with this and then get to the public
3	comment period. Okay.
4	MEMBER MANSFIELD: At what stages do
5	you have to sample the waste and test the
6	waste to determine physical properties, and
7	what physical properties do you have towill
8	you have to measure to meet a WAC, a waste
9	acceptance criterion?
10	MR. RUTLAND: We will sample, that
11	we will do the prequalification sample of the
12	batch. Each one of those 70 inches of sludge,
13	as I've just described in the file staging
14	tanks, will have to be sampled for that
15	prequalification sample. Once that sample's
16	pulled, that tank has to remain quiescent, and
17	what I mean by "quiescent" is no additional
18	weights can be added to that tank during that
19	six month period, while we go do the analyses
20	of the sample that we pulled, to make sure
21	that it meets all of the requirements for the
22	WTP waste acceptance criteria.

	Page 240
1	MEMBER MANSFIELD: And how do you
2	ensure that that sample ishow do you ensure
3	it's homogenous and that your sample is
4	appropriate?
5	MR. RUTLAND: Currently, right now,
6	we have a waste mixing and sampling program
7	that is ongoing in the tank farm. Our plan,
8	and strategy today is to do the waste sampling
9	and mixing in the million gallons tanks.
10	Just so that everybody's very clear,
11	the mixing and sampling issue for Hanford
12	waste is not a new issue. It was identified
13	in 2002 and has been incorporated in the ORP
14	Risk Register since that time.
15	So we've known for a while, that
16	this risk was out there. In 2008, when we
17	took over the contract, EM [Environmental
18	Management] and ORP accelerated our mixing and
19	sampling program by the application of ARRA
20	[American Recovery and Reinvestment Act]
21	funds, such that we accelerated the mixing and
22	sampling program by two years, because we felt

1	Page 241
1	like we needed to have those answers earlier,
2	so that we could support the WTP.
3	MEMBER MANSFIELD: Okay. I'm going
4	to read a list of some potential waste
5	properties that are important for
6	understanding various aspects of the pre-
7	treatment facility operation, and I'd like you
8	to tell me whether or not you measure those,
9	and kind of precision, or rather, confidence
10	level do you have in your measurements.
11	For instance, density. What would
12	thatshall I read the whole list, or would
13	you like me to do one at a time?
14	MR. RUTLAND: I guess first of all,
15	I'd like to say that the requirements for the
16	sample are really being determined, and the
17	and we'll call it the quality of the sample,
18	are being determined by the ongoing DQO [Data
19	Quality Objectives] effort that we have with
20	the WTP today. So I may not be able to answer
21	all of your questions in that
22	MEMBER MANSFIELD: So you don't have

Page 242 any current goals for that. 1 2 You will measure solid content, 3 though? 4 MR. RUTLAND: Yes. 5 MEMBER MANSFIELD: Okay. And 6 activity of course. 7 MR. RUTLAND: Yes. 8 MEMBER MANSFIELD: And gas 9 generation? MR. RUTLAND: I believe that's a 10 part of one of the things that we have asked 11 12 for; yes. 13 MEMBER MANSFIELD: Okay. Including 14 not just H2 but O2, N2, N20? 15 MR. RUTLAND: I believe that's a 16 part of the program where we have identified 17 that we need some analytical technique 18 development and need to do that. 19 MEMBER MANSFIELD: Okay. Do you have 20 heat generation? 21 MR. RUTLAND: Yes. 22 MEMBER MANSFIELD: Viscosity?

Page 243 1 MR. RUTLAND: Yes. 2 MEMBER MANSFIELD: Yield stress? 3 MR. RUTLAND: Yes. 4 MEMBER MANSFIELD: Okay. 5 MR. RUTLAND: Those are currently 6 required by the ICD-19, so we know that we 7 have to measure those. 8 MEMBER MANSFIELD: Yes, and we 9 expect them to show up in the WAC; correct? MR. RUTLAND: Yes. 10 11 MEMBER MANSFIELD: Okay. Are there 12 any others? 13 MR. RUTLAND: I believe we will be 14 asked to determine fissile material content, which is already a part of ICD-19. 15 MS. CHARBONEAU: And critical 16 17 velocity, which refers to the previous 18 question about the density. 19 MEMBER MANSFIELD: I'm sorry. Say 20 that again. 21 MS. CHARBONEAU: Critical velocity. 22 MEMBER MANSFIELD: The critical

		Page	244
1	velocity; right. Okay. But you don't know		
2	yet what accuracy is going to be required?		
3	What confidence level, I should say.		
4	MR. RUTLAND: Currently, we don't		
5	know the accuracy that's going to be required.		
6	That's a part of the DQO process that is		
7	ongoing with the WTP now, and the results of		
8	that will feed in to our mixing and sampling		
9	program such, that we modify our program to		
10	meet the requirements of that DQO.		
11	MEMBER MANSFIELD: Okay. The		
12	Environmental Management Tank Waste		
13	Subcommittee reported 28 issues closed,		
14	including the prequalification capability for		
15	waste batches. "Closed" doesn't mean that		
16	you've got all the answers; right. It means		
17	that you don't believe at this time, that		
18	anything that will prohibit you from		
19	continuing, completing the engineering		
20	procurement or construction efforts; is that		
21	correct?		
22	MS. CHARBONEAU: That's correct.		

Page 2451MEMBER MANSFIELD: Okay. Right now,2that's all that that means; correct?3MS. CHARBONEAU: That's correct.4MEMBER MANSFIELD: So what's closed5is not closed, and you've got a lot of work to6do, and you can't answer questions today about7whether or not you're going to be able to meet8any particular waste acceptance criterion9until you know what it is and10MS. CHARBONEAU: So as the EFRT11issues were closed, and those technical issues12were addressed, any changes necessary to the13interface control document were looked at and14visited. There were some specific changes15with regard to the solids waste percent, that16will be dealt with within the WTP facility as17one of those technical issue closures.18Right now, the tank farm believes19that we can meet the waste acceptance criteria20as21MEMBER MANSFIELD: Any waste22acceptance criteria that's	1	
2that's all that that means; correct?3MS. CHARBONEAU: That's correct.4MEMBER MANSFIELD: So what's closed5is not closed, and you've got a lot of work to6do, and you can't answer questions today about7whether or not you're going to be able to meet8any particular waste acceptance criterion9until you know what it is and10MS. CHARBONEAU: So as the EFRT11issues were closed, and those technical issues12were addressed, any changes necessary to the13interface control document were looked at and14visited. There were some specific changes15with regard to the solids waste percent, that16will be dealt with within the WTP facility as17one of those technical issue closures.18Right now, the tank farm believes19that we can meet the waste acceptance criteria20as21MEMBER MANSFIELD: Any waste		Page 245
3MS. CHAREONEAU: That's correct.4MEMBER MANSFIELD: So what's closed5is not closed, and you've got a lot of work to6do, and you can't answer questions today about7whether or not you're going to be able to meet8any particular waste acceptance criterion9until you know what it is and10MS. CHARBONEAU: So as the EFRT11issues were closed, and those technical issues12were addressed, any changes necessary to the13interface control document were looked at and14visited. There were some specific changes15with regard to the solids waste percent, that16might now, the tank farm believes17one of those technical issue closures.18Right now, the tank farm believes19that we can meet the waste acceptance criteria20as21MEMBER MANSFIELD: Any waste	1	MEMBER MANSFIELD: Okay. Right now,
4MEMBER MANSFIELD: So what's closed5is not closed, and you've got a lot of work to6do, and you can't answer questions today about7whether or not you're going to be able to meet8any particular waste acceptance criterion9until you know what it is and10MS. CHARBONEAU: So as the EFRT11issues were closed, and those technical issues12were addressed, any changes necessary to the13interface control document were looked at and14visited. There were some specific changes15with regard to the solids waste percent, that16will be dealt with within the WTP facility as17one of those technical issue closures.18Right now, the tank farm believes19that we can meet the waste acceptance criteria20as21MEMBER MANSFIELD: Any waste	2	that's all that that means; correct?
 is not closed, and you've got a lot of work to do, and you can't answer questions today about whether or not you're going to be able to meet any particular waste acceptance criterion until you know what it is and MS. CHARBONEAU: So as the EFRT issues were closed, and those technical issues were addressed, any changes necessary to the interface control document were looked at and visited. There were some specific changes with regard to the solids waste percent, that will be dealt with within the WTP facility as one of those technical issue closures. Right now, the tank farm believes that we can meet the waste acceptance criteria as 	3	MS. CHARBONEAU: That's correct.
6do, and you can't answer questions today about7whether or not you're going to be able to meet8any particular waste acceptance criterion9until you know what it is and10MS. CHARBONEAU: So as the EFRT11issues were closed, and those technical issues12were addressed, any changes necessary to the13interface control document were looked at and14visited. There were some specific changes15with regard to the solids waste percent, that16will be dealt with within the WTP facility as17one of those technical issue closures.18Right now, the tank farm believes19that we can meet the waste acceptance criteria20as21MEMBER MANSFIELD: Any waste	4	MEMBER MANSFIELD: So what's closed
 whether or not you're going to be able to meet any particular waste acceptance criterion until you know what it is and MS. CHARBONEAU: So as the EFRT issues were closed, and those technical issues were addressed, any changes necessary to the interface control document were looked at and visited. There were some specific changes with regard to the solids waste percent, that will be dealt with within the WTP facility as one of those technical issue closures. Right now, the tank farm believes that we can meet the waste acceptance criteria as 	5	is not closed, and you've got a lot of work to
 any particular waste acceptance criterion until you know what it is and MS. CHARBONEAU: So as the EFRT issues were closed, and those technical issues were addressed, any changes necessary to the interface control document were looked at and visited. There were some specific changes with regard to the solids waste percent, that will be dealt with within the WTP facility as one of those technical issue closures. Right now, the tank farm believes that we can meet the waste acceptance criteria as MEMBER MANSFIELD: Any waste 	6	do, and you can't answer questions today about
9 until you know what it is and 10 MS. CHARBONEAU: So as the EFRT 11 issues were closed, and those technical issues 12 were addressed, any changes necessary to the 13 interface control document were looked at and 14 visited. There were some specific changes 15 with regard to the solids waste percent, that 16 will be dealt with within the WTP facility as 17 one of those technical issue closures. 18 Right now, the tank farm believes 19 that we can meet the waste acceptance criteria 20 as 21 MEMBER MANSFIELD: Any waste	7	whether or not you're going to be able to meet
 MS. CHARBONEAU: So as the EFRT issues were closed, and those technical issues were addressed, any changes necessary to the interface control document were looked at and visited. There were some specific changes with regard to the solids waste percent, that will be dealt with within the WTP facility as one of those technical issue closures. Right now, the tank farm believes that we can meet the waste acceptance criteria as MEMBER MANSFIELD: Any waste 	8	any particular waste acceptance criterion
 issues were closed, and those technical issues were addressed, any changes necessary to the interface control document were looked at and visited. There were some specific changes with regard to the solids waste percent, that will be dealt with within the WTP facility as one of those technical issue closures. Right now, the tank farm believes that we can meet the waste acceptance criteria as MEMBER MANSFIELD: Any waste 	9	until you know what it is and
 were addressed, any changes necessary to the interface control document were looked at and visited. There were some specific changes with regard to the solids waste percent, that will be dealt with within the WTP facility as one of those technical issue closures. Right now, the tank farm believes that we can meet the waste acceptance criteria as MEMBER MANSFIELD: Any waste 	10	MS. CHARBONEAU: So as the EFRT
interface control document were looked at and visited. There were some specific changes with regard to the solids waste percent, that will be dealt with within the WTP facility as one of those technical issue closures. Right now, the tank farm believes that we can meet the waste acceptance criteria as MEMBER MANSFIELD: Any waste	11	issues were closed, and those technical issues
 14 visited. There were some specific changes 15 with regard to the solids waste percent, that 16 will be dealt with within the WTP facility as 17 one of those technical issue closures. 18 Right now, the tank farm believes 19 that we can meet the waste acceptance criteria 20 as 21 MEMBER MANSFIELD: Any waste 	12	were addressed, any changes necessary to the
15 with regard to the solids waste percent, that 16 will be dealt with within the WTP facility as 17 one of those technical issue closures. 18 Right now, the tank farm believes 19 that we can meet the waste acceptance criteria 20 as 21 MEMBER MANSFIELD: Any waste	13	interface control document were looked at and
16 will be dealt with within the WTP facility as 17 one of those technical issue closures. 18 Right now, the tank farm believes 19 that we can meet the waste acceptance criteria 20 as 21 MEMBER MANSFIELD: Any waste	14	visited. There were some specific changes
17 one of those technical issue closures. 18 Right now, the tank farm believes 19 that we can meet the waste acceptance criteria 20 as 21 MEMBER MANSFIELD: Any waste	15	with regard to the solids waste percent, that
18Right now, the tank farm believes19that we can meet the waste acceptance criteria20as21MEMBER MANSFIELD: Any waste	16	will be dealt with within the WTP facility as
<pre>19 that we can meet the waste acceptance criteria 20 as 21 MEMBER MANSFIELD: Any waste</pre>	17	one of those technical issue closures.
20 as 21 MEMBER MANSFIELD: Any waste	18	Right now, the tank farm believes
21 MEMBER MANSFIELD: Any waste	19	that we can meet the waste acceptance criteria
	20	as
22 acceptance criteria that's	21	MEMBER MANSFIELD: Any waste
	22	acceptance criteria that's

	Page 246
1	MS. CHARBONEAU: As outlined in the
2	interface control document today.
3	MEMBER MANSFIELD: Okay. In ICD-19;
4	right?
5	MS. CHARBONEAU: Right.
6	MEMBER MANSFIELD: Okay.
7	MS. CHARBONEAU: And so as we go
8	through the DQO process and understand, like
9	you said, what's the confidence level, to what
10	degree do we need to sample, what is the size
11	and quantity of those samples, not the kinds
12	of things that we'll need to determine through
13	the DQO process.
14	MEMBER MANSFIELD: Okay. My list of
15	properties beforelet me add to it. Would
16	you have to test for gels and for precipitates
17	that might clog the ion exchange columns,
18	things like that, and things like that as
19	well? Would that be part of a criterion, do
20	you think?
21	MS. CHARBONEAU: I think what we'll
22	need to do is have a good understanding as we-

	Page 247
1	-and I'll just call them "problematic tanks."
2	And Ines referred earlier today about good
3	process history we have with regard to the
4	constituents, and the characteristics of the
5	waste in the tanks today. I think we have a
6	good understanding of the problem tanks that
7	we knew, and we will address those problem
8	tanks through the transfer and blending
9	discussions that Paul had talked about
10	earlier, so as we're putting that feed batch
11	togetherright now, I can't answer the
12	question on to what degree will we
13	characterize those samples specific to things
14	like phosphates.
15	MEMBER MANSFIELD: Is there going to
16	beit the waste acceptance criteria going to
17	define a particle that's too big for you to
18	transfer to the PTF?
19	MR. RUTLAND: Currently, we don't
20	believe that it will. The waste acceptance
21	criteria, as written today, is based on the
22	linear velocity. If we can pump it through

1 the pipe and meet that 3	Page 248
	linear velocity, we'll
2 be okay.	
3 MEMBER MANSFIL	ELD: Okay. What if
4 they have problems proce	essing material with
5 large particles, say, in	n the 100 micron stage?
6 What will you do about t	that?
7 MR. RUTLAND:	We will have to
8 prepare batches that wi	ll meet the waste
9 acceptance criteria	
10 MEMBER MANSFI	ELD: How will you do
11 that? You can't blend 3	large particles away.
12 They're large, no matter	r how much you dilute
13 them.	
14 MR. RUTLAND:	Currently, we don't
15 have a means or mechanis	sm in the tank farm to
16 separate out large part:	icles like 70 microns
17 MEMBER MANSFI	ELD: No. I know you
18 don't.	
19 MR. RUTLAND:	We will have to
20 develop a strategy that	would include
21 MEMBER MANSFI	ELD: All right. Okay.
22 MR. RUTLAND:	grinding, or

	Page 249
1	something else, that would put the particle
2	size into the particle distribution, that
3	would be able to be accepted by the waste
4	acceptance criteria.
5	MEMBER MANSFIELD: And my last
б	question, Mr. Chairman. Are you going to
7	have enough lab space to be able to do all
8	this?
9	MS. CHARBONEAU: For what we know
10	today, the answer's yes.
11	CHAIRMAN WINOKUR: Mr. Bader.
12	MEMBER BADER: Thank you.
13	Ms. Charboneau, looking at the
14	criticality safety recommendations from the
15	Criticality Safety Support Group, there is a
16	statement that tank farms have been in static
17	storage mode. Activity will increase for
18	tank-to-tank sludge transfers, reconfiguration
19	of kilogram quantities of plutonium in the
20	near future.
21	Are you going to revise the
22	criticality safety evaluation report, to

1	recognize the fact you're going into a dynamic	Page
-		
2	from a static mode?	
3	MS. CHARBONEAU: I am not aware if	
4	any plans to go back and reevaluate our	
5	criticality safety report today. Today, the	
6	evaluation has been done, and in fact we had	
7	a criticality safety review performed across	
8	the tank farms, again, about 12 to 18 months	
9	ago, and in the farms today, we find	
10	criticality to be incredible. And that's	
11	primarily based upon the geometries of our	
12	tank, and where we know the Pu oxide is, and	
13	some of the otheryou know, we understand the	
14	distribution of some of the wastes as they are	
15	today, and knowing that process and knowing	
16	where we do have a couple of direct Pu oxide	
17	discharges to those tanks, how we address	
18	that, operationally, keeps us in appropriate	
19	DSA [Documented Safety Analysis] space.	
20	I don't know, Paul, if you had	
21	anything to add.	
22	MR. RUTLAND: Well, there's a couple	

250

Page 251

	I
1	things that we really want to make sure that
2	we are cognizant of. The first one is, we
3	know where the plutonium is. It's not like
4	the plutonium's going to surprise us, that
5	we're going to find plutonium that we don't
6	know about.
7	We feel we have a very good
8	understanding and characterization of where
9	the waste is in the tank farm. The
10	characterization of what's in the waste, the
11	overall composition of the tanks, we feel we
12	have a very good "handle on."
13	As you know, in the late '90s, DNFSB
14	[Defense Nuclear Facilities Safety Board]
15	issued Finding 95-3, that dealt with the
16	characterization of the Hanford tank farm. In
17	the closure of that Board finding, the tank
18	farm and its contractors developed the
19	Hanford-defined waste model, and also did some
20	additional sampling in the tank farm.
21	The Hanford Defined waste model was
22	based on the process knowledge from the

Page 252

Hanford site, from the very beginning of the 1 2 Hanford operation. Each transfer that was 3 made in the tank farm, and from any of the operating facilities in the tank farm, were 4 5 tracked in that model. 6 In addition to that, the Origin 2 7 code was used to predict the composition of 8 the waste streams, of what was processed into the canyon facilities, PUREX processes and 9 those things. The Origin 2 code was updated 10 It was updated, once again, in 2001. 11 in 1965. 12 The reason it was updated in those two 13 timeframes was it was overpredicting the 14 amount of plutonium that was being accounted for. 15 16 And the Origin 2 code is not just a 17 code that applies to Hanford. I'm sure you 18 know it's an industrywide code. 19 MEMBER BADER: Mr. Rutland, let me 20 read--I read from a March 2010 Office of River 21 Protection Report, which summarizes what was 22 discussed. The last sentence is:

	Page 253
1	"Team suggests that contractor not
2	wait until a CSER Change is needed to start
3	working on the next revision."
4	The report goes on to criticize the
5	basis on which the existing CSER is done. It
6	specifies a number of weaknesses. It makes
7	the statement that for a static system, i.e.,
8	not moving sludge around in large quantities,
9	that there is sufficient margin, the benefit
10	of having large amounts of conservatism, such
11	that as long as it stays staticand I'm
12	summarizing a number of statements in here
13	there's not an issue.
14	It says that when you start moving
15	the sludge around, you really need to redo the
16	CSER.
17	MR. RUTLAND: And I was about to get
18	to our control strategy for that. For every
19	transfer that we make in the tank farm, we
20	have a waste compatibility program. One of
21	the things that has to be analyzed for each
22	transfer is criticality. It's also phosphate

		Page
1	generation, gel generation, all of those	_
2	things.	
3	So for each transfer, Dr. Bader, I	
4	believe we do do an analysis of the	
5	criticality associated with that transfer.	
б	So I don't know if we've doneif	
7	there are plans to redo the CSER, but I know	
8	for each transfer, each retrieval that we have	
9	to do in the tank farm, we do have to do a	
10	criticality analysis for that transfer.	
11	MEMBER BADER: Dr. Triay, do you	
12	have any comments on this situation?	
13	DR. TRIAY: As you know, Dr. Bader,	
14	we have an extremely experienced contractor in	
15	the tank farms. They have a substantial	
16	amount of experience at the Savannah River	
17	site, and they retrieve waste and process	
18	waste for treatment at the Savannah River site	
19	routinely. So with respect to the analysis	
20	that has been discussed, the Department of	
21	Energy, at the local level, as well as the	
22	contractor, will get together like they always	

	Page 255
1	do. I mean, Mr. Rutland is not a part of the
2	safety authorization basis of the cadre of
3	experts in the tank farm contract, and as you
4	know, we take, of course, the safety of the
5	tank farms extremely seriously, and our
6	authorization bases are indeed what allows us
7	to move forward.
8	So Ms. Busche and Mr. Sain will
9	probably like to make a comment on this
10	matter.
11	MR. SAIN: Sure. I would. As you
12	know, all that work is controlled under a DSA,
13	for the safety bases, and certainly, any
14	criticality safety evaluationall of that has
15	to be looked at, just like Paul was saying, as
16	part of preparing and planning a transfer.
17	So I can assure you that we're using
18	the same process at TOC that you're familiar
19	with at Savannah River, and that process is
20	very rigorous, to include the safety bases and
21	the criticality safety evaluation part of the
22	planning process.

		Page	256
1	MEMBER BADER: A number of your	_	
2	people were a part of writing this report.		
3	Mr. Brockman, do you have any comments?		
4	MR. BROCKMAN: I do. I'm not		
5	familiar with the report. Could you give me		
б	the title of that report. You said it was		
7	Office of River Protection?		
8	MEMBER BADER: It's Criticality		
9	Safety Recommendations from the Criticality		
10	Safety Support Group, and the lead sentence		
11	is: "The U.S. Department of Energy, CSSG		
12	[Criticality Safety Support Group], conducted		
13	a review of the tank operations contract,		
14	criticality safety technical bases, in		
15	December 2009."		
16	MR. BROCKMAN: I haven'tI'm not		
17	familiar with if I read that, but if that		
18	report was written, I would assume that the		
19	findings have been documented and have been		
20	transmitted to the contractor, and we'll		
21	follow up with it and make it a matter of		
22	record, what the status of that is.		

Page 257 MEMBER BADER: The other--1 2 MS. CHARBONEAU: I guess I would 3 just comment, I am familiar with that review. 4 That's the review that I was referring to 5 earlier. 6 MEMBER BADER: That was what I--and 7 I saw you were down on distribution. 8 MS. CHARBONEAU: Right. But you 9 know, as my response was earlier, I am not 10 aware of any current plans, right now, to revise a CSER. We do address those issues 11 12 through our waste compatibility and our transfer plans. So I'll have to defer and get 13 14 back to you, if there's a specific date that we have identified based upon our increased 15 16 retrievals and DST to DST transfers, we would deem that it's appropriate to readdress the 17 18 CSER. 19 But today, we deal with waste 20 compatibility and ensuring we stay within the 21 DSA controls. 22 The only other MEMBER BADER:

		Page 2
1	question I have is, to me, the discovery of	
2	the plutonium dioxide particles, plural, in a	
3	sample, is a potential game-changer.	
4	Would you comment on how prevalent	
5	you think they are and what characteristics	
6	you've seen from the PoO2 samples that have	
7	been examined, in terms of size, in	
8	particular.	
9	MR. RUTLAND: The samples that we	
10	have today, the largest particle that's been	
11	seen is the one that's referenced in the	
12	report on the WTP, the 40 micron particle,	
13	that if you do the spherical equivalent	
14	becomes a 10 micron particle. As far as a	
15	surprise, I would not say that finding Pu	
16	oxide was a surprise. We actually do know	
17	that Pu oxide does exist in the tank farm. It	
18	also exists in some other tanks in the tank	
19	farm. TX farm, for example, that we have	
20	samples from, we do know we have Pu oxide in	
21	those tanks.	
22	As I said, you know, our HDW	

	Page 259
1	[Hanford Defined Waste] model did predict
2	where those materials would be. Our sample
3	program, every time that we've done a sample,
4	it actually documents and confirms what the
5	HDW model has predicted, as far as waste type
6	is concerned being found in the tank. So the
7	presence of Pu oxide was not a surprise. We
8	knew that Pu oxide was in the tank farm and we
9	have controls to deal with it.
10	MEMBER BADER: Do you plan to do
11	further sampling of those two tanks, SY-102
12	and TX-18I think it's 118, in order to
13	further characterize those because of the
14	discoveryand I'll say, there was statements
15	made that PoO2 was not expected, earlier on.
16	MR. RUTLAND: I don't know who made
17	that statement. I would not agree with it.
18	We do plan on actually re-sampling SY-102. It
19	was in the plan, actually for this year, to
20	resample SY-102. However, the projectwe are
21	in the process of replacing our core drilling
22	machine, and it was deferred until next year.

Page 260
So SY-102 will be sampled next year.
Currently, there's not a planI
mean, I don'tit's not in the next year. We
have sat down with the Department of Energy
and developed an integrated sampling schedule.
I don't believe that the 118 sample is
scheduled in the next year. It may be in the
year after that but I'm notI don't have that
at my hands, right now.
MEMBER BADER: Thank you. I have no
further questions.
CHAIRMAN WINOKUR: Mr. Sain, in the
last year or so, we've reduced the MAR
[Material At Risk] coming into the facility,
or we've reduced the waste acceptance criteria
by reducing the MAR, and there have been other
changes, and I think you've heard the
discussions today about the potential
uncertainties.
What do you see as the challenges
that the tank farm is going to have to face?
Do you think this is the toughest job that a

		Page
1	tank farm is going to have to prepare this	
2	waste, to control and characterize it, and	
3	feed it to this facility.	
4	MR. SAIN: Well, I think, certainly,	
5	it's going to be a challenge to prepare the	
б	waste. But as I stated earlier, I think we	
7	have experience at doing this, at Savannah	
8	River, and I think we have brought expertise	
9	to TOC from Savannah River. We're capable of	
10	supplementing that. I think as the project	
11	goes along, we're going to do what we need to	
12	in the tank farm, to support, you know, the	
13	start-up and the operation of WTP.	
14	CHAIRMAN WINOKUR: Are you going to	
15	be doing that in a proactive role, because we	
16	had a discussion, a very nice discussion with	
17	Paul Beck in Washington, and we were talking	
18	about particle size, and we asked him if he	
19	could control it, and we've had a little bit	
20	of a discussion here about that, and he said	
21	something like, well, we haven't received	
22	notification yet.	

	Page 262
1	And I kind of thought, well, you
2	know, the tank farm is going to run this show
3	in the end, and it would be, it seems to me
4	important, and I encourage you to make sure
5	that you're looking in front of the headlights
6	as much as anybody, to make sure that you can
7	see in advance, and way in advance, if you
8	can, what you're going to have to do to
9	prepare that waste.
10	MR. SAIN: I can't agree more, I
11	agree totally with that, and I think we've,
12	since that time when we had that discussion,
13	you know, we've really focused a lot on
14	integration between WTP and the tank farm, and
15	certainly we have realigned, organizationally,
16	to provide an integrated approach, and, you
17	know, Paul, I'd like for you to addressone
18	of the things that we also discussed at that
19	time was, you know, to do additional sampling,
20	to improve, you know, the characterization of
21	the waste in the tank farms.
22	DR. TRIAY: As Paul gets ready to

	Page 263
1	address that, I would like to point out that
2	part of the assessment report that Mr. Knutson
3	talked about in his opening remarks, called
4	for an integration position at the Department
5	of Energy level, and that position, we have
б	moved out with that position at the Senior
7	Executive Services level, and we're filling
8	that function because we also recognize that
9	integration is extremely important, not only
10	at the contractor level or at the DOE level.
11	One of the specific tasks of the
12	contract, that the tank operator contractor
13	has with the Department of Energy, is
14	integration, and looking ahead for the
15	operability of the Waste Treatment Plant, and
16	how we're going to be feeding the waste to the
17	plant. Go ahead.
18	MR. RUTLAND: One other I would like
19	to point out is we did develop a waste
20	planning DQO, so that we would obtain more
21	information in order to do better planning of
22	the batches going to the WTP. So we completed

Page 264 that effort this past summer and we have 1 2 included samples in the sample program for 3 that very specific purpose, to allow us to do 4 better planning for the batches that are going 5 to the WTP. So we are trying to get out in 6 front of the headlights, so to speak. 7 My experience at the Savannah River 8 site is that's very important, and one of 9 those that Leo talks about being sent up here. We understand the issues that occurred, early 10 11 on, in the DWPF operation with Sludge Batch 2A, where they had to come back and blend some 12 additional waste in it, so that they could 13 14 actually pour glass in the melter. So we're very familiar with the 15 16 problems and the issues that we're facing, and 17 we believe we have the right people. In 18 addition, to make sure that you know that 19 we're communicating significantly with the 20 DWPF on the Savannah River site, we actually 21 had a Waste Feed Workshop at the Savannah 22 River site about two months ago, where we

Page 265 spent three or four days with the DWPF people, 1 2 discussing, walking through their waste acceptance criteria, how they mix and sample 3 4 waste and how we could apply what they've 5 learned at the Savannah River site to how we're going to do it at the Hanford site. 6 7 CHAIRMAN WINOKUR: At this time, 8 have you received any basis of design changes 9 that are telling you to limit the size of plutonium particles, or particles, in general? 10 We have not received 11 MR. RUTLAND: any BOD [Basis of Design] changes to this, to 12 13 date, that limits the particle size, or 14 particle size of plutonium. The document that 15 you were referring to, when I was in 16 Washington two, I guess it's almost three 17 weeks ago now, we met with the WTP on that. 18 It was a draft document, and what you'll see in the next version is that it will say that 19 20 the linear velocity measurement of 4 feet per 21 second will meet the requirement, as outlined 22 in that document, and although the document

	Page 266
1	was not written well and did not say that
2	specifically, it should have said that, and
3	we've talked with the WTP, and we've met and
4	are working together to make sure that that
5	type of issue doesn't occur again.
б	CHAIRMAN WINOKUR: Our last
7	question. Stacy, you needed a new DSA for the
8	tank farms; right? And when do you
9	MS. CHARBONEAU: That's correct.
10	CHAIRMAN WINOKUR: What are the
11	plans for that?
12	MS. CHARBONEAU: We actually just
13	revised the DSA this last year, and so we
14	rolled that out at the beginning of calendar
15	year 2010. We find that that's we relooked
16	at a number of control strategies within the
17	tank farms as a part of that new DSA, as I
18	know you're aware of, and specifically as we
19	look at passive controls and specific
20	administrative controls, we've reanalyzed,
21	based upon some of the material-at-risk
22	discussions, and some of the other, looking

	Page 267
1	forward and how we'll operate the tank farms
2	specific to increase operations in transfers
3	and retrievals, and we believe that the DSA
4	today reduced a great deal of cumbersomeness.
5	I will say in the previous DSA, it's more
6	streamlined and allowed for improved work
7	planning, which we rolled out a new work
8	planning control strategy this year, as well.
9	CHAIRMAN WINOKUR: All right. Thank
10	you. Mr. Brown.
11	MEMBER BROWN: Yes. Thank you, Mr.
12	Chairman. I just have a few questions here.
13	As Iand I guess the first one is for Mr.
14	Knutson. As I prepared for this hearing, I
15	went back and read the testimony of the former
16	Waste Treatment Plant federal project
17	director, that was given to this Board in
18	March 2007 public meeting on safety and
19	design.
20	And in his discussion of technology
21	readiness assessments, he said that after the
22	decision was made not to proceed with two

	Page	268
--	------	-----

fully prototypical pilot plants, the omission 1 2 of extensive prototypical testing has been an expensive error for DOE to correct, one that 3 4 has prolonged the safe disposal of Hanford tank waste. 5 6 Now in Mr. Kasdorf's opening 7 statement, he talked about the need for a 8 credible strategy for dealing with 9 uncertainties, and suggested four actions, and I'm curious, what your reaction is to those 10 four suggestions that he made on how to deal 11 12 with, or how to put together a credible 13 strategy. 14 So do you see a need, a necessity for accelerating the characterization of the 15 16 worst tanks, the waste types, that is, SY-102, TX-118, in the tank farms? 17 Well, I can tell you 18 MR. KNUTSON:

18 MR. KNOTSON: Well, I can tell you
19 that in the evaluation we've just completed,
20 there are two types of risks that are the
21 driving risks for our ability to actively
22 implement our commissioning and start up an

Page 269

1 operational approach.

2	One is the ability to identify a
3	simulant that actually is representative and
4	for which we have reached consensus. The
5	second is the realtime characterization of
6	feedstreams, as well as the realtime
7	characterize of material in the Waste
8	Treatment Plant, or at least as close to that
9	as we can get to maintain assurance that what
10	we expect to be there is what we actually have
11	there.
12	Hopefully, those are elements of the
13	technology development program. They are both
14	elements that have been at least
15	conceptualized in terms of methodologies that
16	are available to help us deal with those
17	issues, and to the extent that the
18	recommendations that Mr. Kasdorf made in his
19	opening comments actually help us to deal with
20	those risks and deal with the ongoing issues
21	that we'll learn from the large-scale vessel
22	test, they would all be considered.

Page 270

1	MEMBER BROWN: So you're satisfied
2	with the progress of characterization of the
3	wastes in the tank farms? I mean, that's
4	meeting your needs, or you need them to
5	accelerate their characterization?
6	MR. KNUTSON: I believe that the
7	characterization of the tank farms, as
8	described by Mr. Rutland, meets the needs of
9	what we would require for an input feedstream.
10	But from an operational point of view, and the
11	ability to understand anything that would be
12	off spec, or something that would happen on a
13	realtime basis, a finer level of detail may
14	very well be required. We'll understand that
15	more as we go through the processes of large-
16	scale testing as well.
17	MEMBER BROWN: Okay. The second
18	thing Mr. Kasdorf recommended was accelerating
19	large-scale testing, which we've already
20	talked about. The third thing he suggested
21	was designing a waste retrieval facility with
22	mixing and sampling capability engineered to

1			
		Page	271
1	protect mixing requirements established by		
2	large-scale testing. Is there a necessity for		
3	that, or is that more in Ms. Charboneau's ball		
4	park?		
5	MR. KNUTSON: I believe that should		
6	be deferred to Ms. Charboneau or to Paul.		
7	MEMBER BROWN: Okay.		
8	MS. CHARBONEAU: We've talked about		
9	a purpose-built facility and we've talked		
10	about the waste receiver facilities in		
11	previous discussions with the Board. The tank		
12	farm's baseline, as it exists today, includes		
13	construction of two waste receiver facilities.		
14	The primary function of those waste receiver		
15	facilities are basically pumping stations and		
16	staging stations as we need to motivate the		
17	single-shell tank waste from those far-		
18	reaching tanks, from a geographic perspective,		
19	looking out at the T farms and the B farms		
20	that are far away from our double-shell tank		
21	farms, as we retrieve those wastes.		
22	We're approaching the need for those		

Page 272 waste receiver facilities from a number of 1 2 angles with regard to potential improvements in how we move the waste from the single-shell 3 4 tanks and consolidate those wastes and stage 5 them, and again move those to the WTP. 6 As we look at the requirements and 7 needs for mixing and blending to meet the 8 waste acceptance criteria of the WTP, we've 9 framed the mixing and sampling studies that are ongoing, right now, in that regard. 10 We expect to know by the end of this 11 12 calendar year, I should say calendar year 13 2011, whether or not we will need to enhance 14 some of the capabilities in the east area 15 waste receiver facility. 16 And so that's what we've discussed. 17 We have it in some of our integrated waste 18 feed plans as a potential opportunity, but we 19 don't know today, if we will need some 20 additional blending and mixing capabilities 21 that we cannot fulfill within a million gallon 22 tank today, until the end of 2011.

1	Page 273
1	But what we've talked about is
2	enhanced capabilities within the existing
3	waste receiver facility for 200 East.
4	MEMBER BROWN: So you say the two,
5	there are two waste retrieval facilities in
6	the baseline?
7	MS. CHARBONEAU: Yes.
8	MEMBER BROWN: And when do you
9	expect the design of those to be complete?
10	MS. CHARBONEAU: The design for the
11	200 East waste receiver facility, as it's in
12	the baseline today, those design activities
13	start in 2015. So we will want to have an
14	answer on, is it necessarily to add capability
15	and enhance that waste receiver facility
16	before 2015? But that's where it is today.
17	The second waste receiver facility
18	is out in past-2020 timeframe.
19	MEMBER BROWN: Okay. Thank you.
20	And the last thing that he recommended was
21	designing a hot pilot plant capability to
22	verify the acceptance of feed batches to WTP,

1and I think a hot pilot plant is more in the2range of WTP's realm. Do you agree with that?3MR. KNUTSON: I don't know that a4hot pilot plant actually adds anything more to5the information that would be needed to6support input feedstreams to the Waste7Treatment Plant. I do agree that the idea of8using the large-scale vessel testing to ensure9that we understand what the characteristics10are of a batch ,or what the characteristics11are of a feedstream process, of even what the12training and qualification criteria would be13for individuals who have to interact with that14type of a batch, is a critically important15element.16Whether you take that all the way to17establishing another contaminated facility for18the purposes of dealing with hot pilot19capabilities, that's a question that I haven't20MEMBER BROWN: Mr. Rutland, how many21MEMBER BROWN: Mr. Rutland, how many		Page 274
3 MR. KNUTSON: I don't know that a 4 hot pilot plant actually adds anything more to 5 the information that would be needed to 6 support input feedstreams to the Waste 7 Treatment Plant. I do agree that the idea of 8 using the large-scale vessel testing to ensure 9 that we understand what the characteristics 10 are of a batch ,or what the characteristics 11 are of a feedstream process, of even what the 12 training and qualification criteria would be 13 for individuals who have to interact with that 14 type of a batch, is a critically important 15 element. 16 Whether you take that all the way to 17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER EROWN: Mr. Rutland, how many	1	and I think a hot pilot plant is more in the
4hot pilot plant actually adds anything more to5the information that would be needed to6support input feedstreams to the Waste7Treatment Plant. I do agree that the idea of8using the large-scale vessel testing to ensure9that we understand what the characteristics10are of a batch ,or what the characteristics11are of a feedstream process, of even what the12training and qualification criteria would be13for individuals who have to interact with that14type of a batch, is a critically important15element.16Whether you take that all the way to17establishing another contaminated facility for18the purposes of dealing with hot pilot19capabilities, that's a question that I haven't20considered yet.21MEMBER BROWN: Mr. Rutland, how many	2	range of WTP's realm. Do you agree with that?
5the information that would be needed to6support input feedstreams to the Waste7Treatment Plant. I do agree that the idea of8using the large-scale vessel testing to ensure9that we understand what the characteristics10are of a batch ,or what the characteristics11are of a feedstream process, of even what the12training and qualification criteria would be13for individuals who have to interact with that14type of a batch, is a critically important15element.16Whether you take that all the way to17establishing another contaminated facility for18the purposes of dealing with hot pilot19capabilities, that's a question that I haven't20considered yet.21MEMBER BROWN: Mr. Rutland, how many	3	MR. KNUTSON: I don't know that a
 support input feedstreams to the Waste Treatment Plant. I do agree that the idea of using the large-scale vessel testing to ensure that we understand what the characteristics are of a batch ,or what the characteristics are of a feedstream process, of even what the training and qualification criteria would be for individuals who have to interact with that type of a batch, is a critically important element. Whether you take that all the way to establishing another contaminated facility for the purposes of dealing with hot pilot capabilities, that's a question that I haven't considered yet. 	4	hot pilot plant actually adds anything more to
 Treatment Plant. I do agree that the idea of using the large-scale vessel testing to ensure that we understand what the characteristics are of a batch ,or what the characteristics are of a feedstream process, of even what the training and qualification criteria would be for individuals who have to interact with that type of a batch, is a critically important element. Whether you take that all the way to establishing another contaminated facility for the purposes of dealing with hot pilot capabilities, that's a question that I haven't considered yet. 	5	the information that would be needed to
 8 using the large-scale vessel testing to ensure 9 that we understand what the characteristics 10 are of a batch ,or what the characteristics 11 are of a feedstream process, of even what the 12 training and qualification criteria would be 13 for individuals who have to interact with that 14 type of a batch, is a critically important 15 element. 16 Whether you take that all the way to 17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many 	6	support input feedstreams to the Waste
 9 that we understand what the characteristics are of a batch ,or what the characteristics are of a feedstream process, of even what the training and qualification criteria would be for individuals who have to interact with that type of a batch, is a critically important element. 16 Whether you take that all the way to establishing another contaminated facility for the purposes of dealing with hot pilot capabilities, that's a question that I haven't considered yet. 21 MEMBER BROWN: Mr. Rutland, how many 	7	Treatment Plant. I do agree that the idea of
 10 are of a batch ,or what the characteristics 11 are of a feedstream process, of even what the 12 training and qualification criteria would be 13 for individuals who have to interact with that 14 type of a batch, is a critically important 15 element. 16 Whether you take that all the way to 17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 Considered yet. 21 MEMBER BROWN: Mr. Rutland, how many 	8	using the large-scale vessel testing to ensure
11 are of a feedstream process, of even what the 12 training and qualification criteria would be 13 for individuals who have to interact with that 14 type of a batch, is a critically important 15 element. 16 Whether you take that all the way to 17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many	9	that we understand what the characteristics
 12 training and qualification criteria would be 13 for individuals who have to interact with that 14 type of a batch, is a critically important 15 element. 16 Whether you take that all the way to 17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many 	10	are of a batch ,or what the characteristics
 for individuals who have to interact with that type of a batch, is a critically important element. Whether you take that all the way to establishing another contaminated facility for the purposes of dealing with hot pilot capabilities, that's a question that I haven't considered yet. MEMBER BROWN: Mr. Rutland, how many 	11	are of a feedstream process, of even what the
14 type of a batch, is a critically important 15 element. 16 Whether you take that all the way to 17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many	12	training and qualification criteria would be
<pre>15 element. 16 Whether you take that all the way to 17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many</pre>	13	for individuals who have to interact with that
 16 Whether you take that all the way to 17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many 	14	type of a batch, is a critically important
<pre>17 establishing another contaminated facility for 18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many</pre>	15	element.
18 the purposes of dealing with hot pilot 19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many	16	Whether you take that all the way to
<pre>19 capabilities, that's a question that I haven't 20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many</pre>	17	establishing another contaminated facility for
20 considered yet. 21 MEMBER BROWN: Mr. Rutland, how many	18	the purposes of dealing with hot pilot
21 MEMBER BROWN: Mr. Rutland, how many	19	capabilities, that's a question that I haven't
	20	considered yet.
22 flow sheets do you expect to come out of this,	21	MEMBER BROWN: Mr. Rutland, how many
	22	flow sheets do you expect to come out of this,

	Page
1	the tank farms? I've heard a number up in the
2	near 500 different recipes for wastes that are
3	going to be developed as you try andas you
4	not trybut as you actually empty these
5	tanks.
6	MR. RUTLAND: I'm not sure exactly
7	how to answer your question. I can tell you
8	that we have 49 different sludge types in the
9	tank farm. Those will be blended together to
10	produce a batch of material.
11	Right now, on the HLW side, I
12	believe we have 300 batches over the life
13	cycle of the mission. Now it's been a long
14	time. I can get the exact numbers and put them
15	in the
16	MS. CHARBONEAU: It's three hundred-
17	_
18	MEMBER BROWN: But we're in the
19	hundreds?
20	MR. RUTLAND: We're in the hundreds
21	of batches
22	MS. CHARBONEAU: 376.

MR. RUTLAND: --that we will prepare, very similar to what's being done at Savannah River site. They have several, lots of batches that they have to produce too. On the LAW [Low-Activity Waste] side, we have a fewer number because the LAW waste is able to be stored in million gallon tanks, and it's not nearly as complex to be able to move that So right now, I would say we have 300 and something batches of high-level waste. We have 49 different waste types in the tank I want to be careful, cause that sounds like a lot, because there are--most of those waste types are very, very similar to one

16 another. There's just slight nuances

associated with them. 17

waste around.

farm.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

For example, AZ-101 is a waste type, 18 19 and we have a AZ-102 waste type, because 20 they're just very slightly different and what 21 was predicted by the model was actually found 22 in the tank.

Page 277 So although they're both PUREX 1 2 waste, very, very similar waste, we have two 3 different waste types to describe them. So to 4 say we have 49 waste types is a little bit 5 misleading because it's not nearly as many as 6 that. 7 So does that answer your question? 8 I apologize--9 MEMBER BROWN: What I understand the 10 hot pilot plant to be is to take these recipes 11 and run them through until they're glass, to 12 make sure that you don't experience a problem in the big plant, and with several hundred of 13 14 these to do, it seems like it might be nice to 15 know that it's going to work, before you fill 16 up the vessels in the Waste Treatment Plant. 17 MR. RUTLAND: And we agree with you, 18 Dr. Brown. It is planned during the 19 pregualification--20 MEMBER BROWN: Mr. Brown. 21 MR. RUTLAND: Mr. Brown. Т 22 apologize. Mr. Brown, we do, in the

	Page 278
1	prequalification of the sample, do intend to
2	take the sample that we pull from the waste
3	tank. When we lock it down, we tell you about
4	the six months. The reason it's six months is
5	so that we can take that sample and run it
б	through in the laboratory, each step in the
7	WTP process. So we willif we're going to
8	leach that sample, we'll reproduce the
9	leaching in the laboratory to make sure that
10	we understand what's going to happen in the
11	WTP from a leaching perspective.
12	So we will do that on a bench
13	laboratory scale. I'm notand that was very
14	similar to how we actually started up the
15	DWPF, where we would pull the samples and take
16	it to the lab, and run it through the mini
17	molter, and determine whether or not we could-
18	-it would pour, or what the viscosity of the
19	glass was, all of those properties that were
20	critical, at that time, at the Savannah River
21	site. So we have a similar process here.
22	Although it's not a pilot plan, it is a

	Page 279
1	laboratory plan to take the sample through the
2	various operating, unit operations in the WTP
3	in a laboratory setting.
4	MEMBER BROWN: Okay. Thank you.
5	MR. SAIN: That actually validates,
6	Larry, what you were asking, how are you going
7	to validate before you put it in the plant.
8	But you heard what Paul said.
9	MEMBER BROWN: I've heard a number
10	of people suggest that, and when I went back
11	and read the previous technical director's
12	statement, I said, "gee, that's come up
13	again." So I think it's something you might
14	think about. I just want to ask one more
15	question. I know we're trying to move on, so
16	we make sure that the audience, anyone who
17	wants to make a statement, and I know, Mr.
18	Chairman, you have several other comments.
19	Dr. Triay, if I could ask you just a
20	couple questions here.
21	According to the current Hanford
22	cleanup project system plan, which I think is

	Page 280
1	Revision 4, but whatever the baseline is, when
2	will the waste treatment mission be completed,
3	here, in Hanford?
4	DR. TRIAY: I believe that it's
5	2047, in the last systems plan. But please
6	correct me if
7	MS. CHARBONEAU: The TPA [Tri-Party
8	Agreement] milestone is 2047 but the system
9	plan actually has us completing the mission in
10	2045.
11	MEMBER BROWN: So you've given
12	yourself two years of margin in that.
13	MS. CHARBONEAU: Plenty of cushion.
14	DR. TRIAY: But let me make sure
15	that we understand the regulatory framework.
16	The regulatory framework of the triparty
17	agreement necessitates that the Department of
18	Energy look into improvements to those dates,
19	the date of 2047, that we proactively look at
20	ways to accelerate the tank waste cleanup,
21	here, at the Hanford site.
22	And we have, at the direction of the

	Page
1	secretary, made a significant investment, on
2	the order of \$50 to \$60 million per year,
3	depending on the year, to technology
4	development associated with a tank waste
5	cleanup, at both the Hanford site and Savannah
б	River site.
7	And we invested, from the Recovery
8	Act, about \$300 million associated with
9	accelerating the infrastructure that we are
10	going to need at the tank farms in order to
11	support the Waste Treatment Plant coming
12	online. Some of those infrastructure
13	improvements were, indeed, associated with the
14	laboratory that Mr. Rutland was just talking
15	about.
16	MEMBER BROWN: So the current
17	baseline to meet that date, 2045, or to meet
18	the commitments to the state, that includes a
19	second LAW; is that correct?
20	MS. CHARBONEAU: That is correct.
21	DR. TRIAY: The baseline does, the
22	regulatory framework calls for a decision on

Page 282 supplemental low activity waste capability. 1 2 MEMBER BROWN: That's actually where 3 I'm trying to get to, the problems that the 4 farms have to address. Do you need--in your assessment today, I know that's not a decision 5 6 today, but do you feel a need to have 7 supplementary pretreatment in the tank farms 8 to meet the commitment? 9 DR. TRIAY: In order to meet the commitment, what we definitely need is 10 supplemental capability for low activity 11 12 waste. As we have delineated and is clear in our regulatory framework, the Waste Treatment 13 14 Plant will provide capability for about 50 percent of the low activity waste capability 15 that we need for the entire tank waste 16 17 cleanup. 18 So we definitely need supplemental capability for low activity waste as part of 19 20 the technology development efforts that we are 21 conducting. The Secretary of Energy feels 22 strongly, that the environmental management

		Page	283
1	program needs to invest in technology		
2	development, applied research and development,		
3	that would allow us to perform our mission		
4	more effectively, and accelerate the mission		
5	in this particular case of the tank waste		
6	cleanup, and as part of those efforts, you		
7	know, to accelerate that mission, we are		
8	considering in tank, at tank precipitation,		
9	including a number of options for adding		
10	supplemental low activity waste capability to		
11	the tank waste cleanup at Hanford.		
12	MEMBER BROWN: And that's including		
13	a number of other novel technologies like		
14	steam reforming, or any of those?		
15	DR. TRIAY: That is part of what we		
16	are looking at. As you know, the regulatory		
17	framework does call for a waste form that is		
18	as good as glass. So we have asked the		
19	National Academy of Science to perform a study		
20	on waste forms. I mean, they have published		
21	the interim report. They have spoken about		
22	the criteria of as good as glass, but, yes,		

		Page	284
1	the reforming would be one of those options,		
2	there would be other options, and the at tank,		
3	or in tank treatment would involve innovative		
4	technologies such as rotoring microfiltration		
5	or a small ion column exchange. It is		
6	essential that we perform the tank waste		
7	cleanup in earnest, and that is the objective		
8	of our investments in applied research and		
9	development.		
10	MEMBER BROWN: Thank you very much.		
11	I think I've gotten the hook. So Mr.		
12	Chairman.		
13	CHAIRMAN WINOKUR: Thank you. And		
14	Ms. Roberson.		
15	MS. ROBERSON: Okay. Actually, I'm		
16	just going to ask two questions. Mr.		
17	Chairman, I'll be very, very quick.		
18	In reading the responses to the		
19	Board questions, it struck me that ICD-19 must		
20	be undergoing an update. Is that right, Mr.		
21	Rutland? No?		
22	MR. RUTLAND: Let me respond. ICD-		

	Page 285
1	19 is in revision. Yes, it is. We are
2	working with the WTP. There are several areas
3	that we're still trying to close on ICD-19,
4	and as the results of the DQO assessment come
5	out, and as the results of our mixing and
6	sampling program come, we will again meet
7	together to make sure that ICD-19 still meets
8	all of our requirements.
9	So ICD-19, I would describe it as a
10	living document for the next short period of
11	time, until we close these issues, and then we
12	can finalize the ICD-19. So it is being
13	revised. We have actually just made a minor
14	revision to it in the last two months, so
15	MS. ROBERSON: Okay. And then my
16	last question, and it actually crosses over
17	another session, so I'll just keep it brief
18	because we're kind of creating a sense that we
19	have finality, but, in essence, because you
20	haven't created your operating envelope for
21	WTPis that right, Ms. Busche?
22	MS. BUSCHE: Correct.

Page 286 Okay. Who, WTP, tank 1 MS. ROBERSON: 2 farm, will be developing the procedures, once 3 you have that operating envelope, for standards and verification that the waste 4 5 meets that acceptance criteria that will be 6 enveloped in the safety basis for WTP? Who? 7 Which--who will do that? 8 MR. KNUTSON: The Waste Treatment 9 Plant project includes the scope of work for developing those procedures and for training 10 11 and qualifying the staff that are responsible 12 for implementing those procedures. So WTP will have a 13 MS. ROBERSON: 14 certification group, or whatever you want to 15 call it, a group that is responsible for 16 certifying that the waste, and the process 17 utilized at the tank farm, is acceptable in 18 qualifying waste? 19 I think that we MR. KNUTSON: 20 introduced this concept of the integration 21 function between the tank farms and the WTP. That role is a Senior Executive Service role. 22

Page 287 Part of that role includes the definition of 1 2 what I would call "expected conditions," expected conditions both from the tank farm 3 4 feedstream and expected conditions from the 5 Waste Treatment Plant, in terms of its 6 readiness to receive that feedstream. That 7 function is now being defined. 8 MS. CHARBONEAU: Can I stake a stab at this one. The ICD, as its written today, 9 10 requires a WTP contractor to do the waste farm 11 qualification during commissioning, and so as 12 Dale had talked to, they are responsible for 13 writing the operating procedures, et cetera. 14 But as we've talked about earlier today, 15 clearly, the eventual operating contractor 16 needs to be a part of the commissioning 17 efforts and the readiness efforts of operating 18 the WTP. 19 We are using ARRA funds today to 20 upgrade the 222-S facility that we anticipate 21 to be used for waste farm qualification in the 22 future, and so while those procedure and

	Page 288
1	processes will be a part of the commissioning
2	effort for WTP, that will transition to the
3	operating contractor, most likely at the 222-S
4	facility.
5	Does that help answer the question?
6	MS. ROBERSON: Well, it does, and I
7	think we can come back to it later. You're
8	not going to wait until commissioning to
9	figure that out, because if you need
10	additional capabilities, you've got to have
11	them in place, so
12	MS. CHARBONEAU: No; you're
13	absolutely right. That's actually almost a
14	different question than I was answering. So
15	Paul can help answer that too. But we
16	understand there are some additional
17	analytical methods that will need to be
18	developed for waste farm qualification, not
19	necessarily for commissioning, but as we
20	understand the waste acceptance criteria, and
21	the characterization of the waste we have in
22	some of those more problematic tanks today,

	Pa	age	289
1	and so we have a good idea of what additional	_	
2	analytical methods will be need to be		
3	developed, and that is a part of the tank		
4	operations baseline today.		
5	MR. RUTLAND: We have already		
6	actually asked the 222-S lab to start		
7	developing some of those analytical		
8	techniques. We've identified some of them,		
9	and we've already asked them to start working		
10	on developing those techniques.		
11	MS. ROBERSON: And I guess the only		
12	thing I want to confirm is, even though ICD-19		
13	is a living document, you are assuming, based		
14	on at least what we got in responsewe saw a		
15	lot of responses that said, "And if this will		
16	be a restriction on the waste acceptance		
17	criteria." You're assuming, though, so that		
18	you're prepared; is that right?		
19	MR. RUTLAND: Yes; absolutely.		
20	CHAIRMAN WINOKUR: Well, let me		
21	thank our panelists, some of whom have been		
22	with us for five hours, and probably will get		

		Page	290
1	a Board medal. We haven't designed it yet.		
2	We'll be sending it out. Thank you, Dr.		
3	Triay, Mr. Knutson, Mr. Brockman, Mr. Rutland,		
4	Ms. Charboneau, and Mr. Sain and Ms. Busche.		
5	And that concludes the testimony from our		
6	staff and the department, and we're now going		
7	to move on to call members of the public who		
8	have signed up to speak.		
9	As I indicated earlier, I'll ask		
10	each speaker to limit remarks to about five		
11	minutes. If times permits, I'll extend the		
12	time for additional comments.		
13	And I believe there are microphones		
14	in the audience that you can use. And the		
15	first person on our list is Ms. Suzanne Dahl.		
16	MS. DAHL: Well, thank you. Thanks		
17	to the Board for offering this opportunity for		
18	public comment. I'm Suzanne Dahl of the		
19	Washington State Department of Ecology. I'm		
20	the tank waste treatment section manager. The		
21	Department of Ecology regulates the cleanup of		
22	Hanford through the Hanford Facility Agreement		

	Page 291
1	and Consent Order, and most recently through
2	a consent decree filed in court, and through
3	our authority in various permits, we regulate
4	the design, construction and operation of
5	equipment that touches the hazardous waste, to
6	protect the environment, the workers, and the
7	people of this region.
8	I would like to say that the State
9	of Washington welcomes and depends on the
10	nuclear waste safety review that the DNFSB
11	provides, both today and for many years before
12	this. As regulators, we appreciate your
13	detailed approach on these safety issues.
14	I would like to highlight, that the
15	tremendous risk that exists from the 53
16	million gallons of high-level radioactive
17	mixed waste. It poses a significant risk to
18	the underlying aquifers, to the Columbia River
19	and to the region as a whole, and it is
20	essential that this waste be retrieved and
21	immobilized into glass, to prevent future
22	catastrophic impacts.

Page 292 I can also say that Washington State 1 2 Governor Gregoire, and the ecology director, consider it essential that the Waste Treatment 3 4 Plant is completed in a timely manner, 5 essentially the end of this decade, and that 6 the Waste Treatment Plant proceed to emptying 7 the tanks and immobilizing the waste to 8 protect this region. 9 However, it is Washington State's 10 expectation that the Waste Treatment Plant be constructed in a manner that will allow it to 11 operate safely and efficiently. 12 13 We recognize the complexity of this 14 facility and strongly support the detailed, 15 comprehensive and timely review, and resolution of both technical and safety 16 17 issues. 18 And to just talk about two of those issues, briefly. ORP has spent a significant 19 20 amount of time with the Department of Ecology 21 explaining the changes that they propose at 22 the material-at-risk, and their approach

	Page 293
1	seemed reasonable, and the goal of reducing
2	the complexity of active controls made sense
3	to us, as regulators.
4	The resolution of the mixing issues,
5	and the need to be able to move the waste, the
6	heel waste, so to speak, downstream, so it can
7	be treated, is essential, because obviously,
8	all this waste needs to eventually end up in
9	glass. And the Department of Ecology is
10	anticipating, and plan to be very involved in
11	the resultant changes of the vessels that will
12	need to occur.
13	And so again, I'd like to thank the
14	Board for its commitment to this project and
15	commitment to this region.
16	CHAIRMAN WINOKUR: Thank you, Ms.
17	Dahl. Next is Mr. Carl Adrian.
18	MR. ADRIAN: I'll make it easy on
19	the sound people and stay at one microphone
20	this afternoon. I'm president and CEO of the
21	Tri-City Development Council, locally referred
22	to as TRIDEC. TRIDEC is the lead economic

1	development organization that serves Benton
2	and Franklin counties. The organization was
3	formed in 1963, and among other designations,
4	we have the designation from the Department of
5	Energy as the community reuse organization, or
6	the CRO for the metropolitan area.
7	TRIDEC has approximately 375 member
8	firms as well as contracts with all, or most,
9	of the local governments in the community.
10	Our primary mission is to facilitate job
11	creation and capital investment in the region.
12	But as part of those broader economic
13	development programs, TRIDEC has had a long
14	history and interest, and involvement with
15	DOE, the Hanford site, and the contractors.
16	Now let me talk about some of the
17	details from a community standpoint. First,
18	Hanford. As you well know, for 67 years, our
19	community, along with other weapons complex
20	communities, has supported national missions.
21	First, World War II, next the Cold War, and
22	finally, the cleanup mission that's underway

1 currently.

2	The good news is Hanford is getting
3	cleaned up, and I think we're all pleased
4	about that, particularly from a community
5	standpoint. In just four short years, by
6	2015, the 586 square mile site will be reduced
7	down to approximately 75 square miles, and I
8	know it sounds like a big area but it's only
9	75 square miles compared to that 586.
10	And as you know, that's where the
11	location of the WTP is. Between 2015 and
12	2019, the Waste Treatment Plant construction
13	will be completed, systems will be turned over
14	and the plant becomes operational. We've had
15	two members of TRIDEC's staff monitoring
16	design, construction, working with DOE, and
17	others, in this process for the last ten
18	years.
19	We at TRIDEC, with support from the
20	Department of Energy, have hosted more than 85
21	congressional staff at the site during that
22	same time period. We have consistently felt

	Page	296
--	------	-----

	P
1	that it's important for congressional staff to
2	personally visit the waste treatment facility
3	and witness firsthand the size and complexity
4	of the plant.
5	Also, we feel strongly that it's
6	important for the congressional staff, and the
7	members, to know that this community is
8	directly involved, interested, and concerned
9	with making certain the plant works, and
10	making certain the plant works safely.
11	And safety both in terms of the
12	workers that are at the plant, but, frankly,
13	also for us that live nearby the plant, in the
14	community.
15	Confidence in the Waste Treatment
16	Plant is imperative, I think, from a community
17	standpoint. The fact that the single-shell
18	tanks are aging makes the need to complete the
19	design, construction, and make the plant
20	operational extremely important. You heard
21	that from the Department of Ecology a few
22	minutes ago.

	Г	
		Page 2
1	We ask the Board to make the	
2	necessary decisions to complete design as	
3	quickly as possible. We certainly don't want	
4	to sacrifice safety, but again, I think the	
5	message from the community is "we need to get	
6	on with it and get the cleanup completed."	
7	Successful operation of the WTP is	
8	the largest and final steps to Hanford	
9	cleanup. The other nations, such as France	
10	and Japan, have reprocessing programs,	
11	classification programs, they're working, and	
12	we support this plan and want to see it go	
13	operational. We have confidence in your	
14	ability to do the necessary reviews to make	
15	this plant a safe plant and get it online.	
16	We also have the utmost confidence	
17	in Bechtel and the DOE's Departmentor Office	
18	of River Protectionto make sure that the	
19	plant goes operational in a timely fashion.	
20	Again, the message from the community is we	
21	want to get on with it, we want to finish	
22	cleanup, and get on with whatever that post-	

297

Page 298 Hanford economy looks like. 1 2 So again, thank you very much for 3 the opportunity to speak. I'd be happy to answer any questions in the future. Thank 4 5 you. 6 CHAIRMAN WINOKUR: Thank you, Mr. 7 Adrian. 8 Mr. Tom Carpenter. 9 MR. CARPENTER: So I realize I'm 10 your last, maybe your last person standing between you and lunch, so I'll try to be 11 12 efficient. So again, I'd like to repeat, thanks for you holding this hearing today, and 13 14 to afford an issue for the public to weigh in 15 on these various important issues. My name is 16 Tom Carpenter, and I'm the executive director 17 of an organization called Hanford Challenge. 18 It's a regional public, nonprofit 19 organization, that seeks to have a positive 20 influence on the environmental remediation 21 mission at the Hanford site. 22 Hanford Challenge fully recognizes

Page 299 the urgency for a robust and effective 1 2 treatment strategy for dealing with Hanford's 3 high-level waste. So, of course we support 4 the Waste Treatment Plant strategy for 5 vitrifying high-level waste with disposal in 6 deep geological repository. 7 Of course any such facility, as has 8 already been said, and is recognized by you 9 folks, must operate safely and efficiently. Therefore none of my comments should be 10 11 interpreted to mean that we are in any way 12 opposed to the Waste Treatment Plant but we do care about a facility that works, and works in 13 14 a manner that does protect workers and the 15 public. I've had a role at Hanford since 16 17 1987, assisting numerous employees who have 18 raised concerns about environmental safety, 19 health, and management issues. Many of the 20 employees I've helped suffered reprisal as a 21 result of their attempts to raise these 22 Some where unjustly and illegally issues.

	Page 300
1	fired from their jobs. Others were harassed
2	and discriminated against in various ways.
3	It is vital to Hanford's
4	environmental remediation mission, that a
5	safety culture is established and nurtured, so
6	that employees can bring concerns forward
7	without fear of reprisal. A culture of
8	suppressed concerns leaves us guessing whether
9	there might be hidden defects that could
10	result in a failure of equipment or processes
11	that could impact workers, the public, or the
12	effectiveness of the mission.
13	Since 2002, we have worked with
14	insiders from the Waste Treatment Plant,
15	including experts who have raised issues about
16	the design and construction of the facility.
17	Most of these employees have been fearful
18	about stepping forward because of the impact
19	on their careers.
20	Our major concerns with the Waste
21	Treatment Plant are simply stated. The
22	quality and reliability of the Waste Treatment

	I	Page	301
1	Plant is suspect when employee concerns are		
2	effectively suppressed through the design and		
3	construction phase of the facility.		
4	Additionally, the recent decision to quickly		
5	close out unresolved design concerns for		
6	resolution at a later date perpetuates what we		
7	see as a "delay and deny" strategy that		
8	continues to set the WTP up for failure.		
9	While this decision may have met a TPA		
10	milestone and earned the contractor millions		
11	of dollars in fee, it does not inspire		
12	confidence in the motivations of the		
13	contractor and the government agency tasked		
14	with building facilities capable of vitrifying		
15	high-level nuclear waste.		
16	Bechtel has a history of suppressing		
17	employees raising safety concerns. The		
18	Department of Energy itself has confirmed the		
19	existence of a hostile work environment at the		
20	Waste Treatment Plant in the 2005 report. The		
21	team from DOE interviewed 117 employees, and		
22	found that greater than 50 percent of the		

		Page
1	workers interviewed believed that their job	
2	would be in jeopardy due to their	
3	participation in that inquiry.	
4	Most of the interviewees, the report	
5	says, mentioned other workers had issues but	
6	felt they could not risk their employment by	
7	coming forward. Roughly 20 percent voiced the	
8	belief that when individuals raise safety	
9	concerns, those individuals are targeted for	
10	future layoff lists.	
11	Roughly 15 percent of the	
12	interviewees claimed that there were fear of	
13	layoffs of workers who reported issues to the	
14	Employee Concerns Program.	
15	In 2008, the DOE also imposed a	
16	civil penalty for nuclear safety violations	
17	against Bechtel National, Incorporated, based	
18	upon the findings of a DOE hearing officer	
19	that a Bechtel engineer had been terminated	
20	after having raised nuclear safety concerns.	
21	And more recently, on July 2nd,	
22	2010, Dr. Walter Tamosaitis, the manager for	

302

	Page 303
1	research and technology for the Waste
2	Treatment Plant, was removed from his position
3	following his submittal of approximately 50
4	safety and technical issues. His abrupt
5	removal sent a shock wave through the facility
6	and led to that engineer's letter to this
7	body.
8	CHAIRMAN WINOKUR: Mr. Carpenter,
9	could you summarize fairly soon.
10	MR. CARPENTER: Sure.
11	CHAIRMAN WINOKUR: Thank you.
12	MR. CARPENTER: His concerns are
13	identical to many of the issues being
14	discussed at this meeting. Yesterday, in an
15	apparent rush to publish a report in honor of
16	this very hearing, the DOE's Health Safety and
17	Security Office released a report on the Waste
18	Treatment Plant safety culture, and in that
19	report concluded:
20	"A number of individuals have lost
21	confidence in management's support for safety,
22	believe there is a chilled environment that

1 discourages reporting of safety concerns, and 2 are concerned about retaliation for reporting 3 safety concerns."

So we have a number of questions to raise to you. In the interest of time, I'm just going to skip through to the last couple of questions, and submit material for the record.

9 One of our major concerns is why has 10 the Department of Energy assigned the design 11 agent and the design authority role to 12 Bechtel, when Bechtel clearly has a potential conflict of interest in authorizing its own 13 14 work? Our question is shouldn't these roles be separated and the design authority operate 15 16 independently of the contractor responsible 17 for building this plant? 18 And we would suggest that perhaps 19 this body, the DNFSB, or the Nuclear 20 Regulatory Commission, could fulfill that 21 role. 22 At this stage in the game, we wonder

	Page 305	
1	if Bechtel is the right contractor to build	
2	this facility, or continue building the	
3	facility, given the history of failures,	
4	reprisals, and missteps. We question whether	
5	or not DOE is providing the necessary	
6	oversight for a rigorous, robust and	
7	conservative design. Again, we appreciate the	
8	Board and its role here.	
9	We note that for the first six years	
10	of design and construction, Bechtel lacked a	
11	vendor quality assurance process, and how can	
12	we assure that the quality of procured	
13	equipment and instruments is adequate without	
14	the necessary pedigree? Which leads us to	
15	ask the question, would this facility be	
16	considered for licensing by the Nuclear	
17	Regulatory Commission or would that license be	
18	denied due to its quality, indeterminate	
19	state?	
20	And does the public deserve a plan	
21	that meets the safety standards of an NRC	
22	[Nuclear Regulatory Commission] licensed	

Page 306 facility? 1 2 So to wrap up, after spending, from 3 our perspective, spending ten years and \$6 billion so far, designing and building the 4 5 Waste Treatment Plant, it appears that nobody 6 can really guarantee that this plant will 7 operate safely or effectively. 8 The strategy of closing out 9 unresolved safety concerns and waiting until operations begin, or at a later date, instead 10 11 of resolving those issues before start-up, 12 guarantees far greater cost increases and 13 schedule delays in the long run. When the 14 atmosphere has been poisoned by a history of 15 reprisals against employees who raise 16 concerns, the quality and safety of the plant 17 will always remain indeterminate. So again, I will submit the rest of 18 19 my comments in writing, and thank you very 20 much for your attention. 21 CHAIRMAN WINOKUR: Thank you. We'll 22 be happy to accept it into the record, and

Page 307 thank you for your comments, Mr. Carpenter. 1 2 Now just as a matter of formality, there are a few names down here that I need to 3 4 assure don't want to speak at this time. The 5 indication is they may not. One is Mr. 6 Jennifer Gregory. Liz Matson. John Williams. 7 And Walt Tamosaitis. 8 Seeing nobody approaching the 9 microphone, I'd like to say that this concludes the public comment portion of the 10 session and I'll therefore close this session. 11 12 Anyone who wishes to submit written 13 testimony should do so at this time, by giving 14 a copy to the Board's general counsel, Richard Thank you all for coming. 15 Azzaro. We're recessing the hearing and 16 17 we'll reconvene at 5:00 p.m. this evening. (Whereupon at 2:03 pm., the above-18 19 entitled matter went off the record.) 20 21 22

				Page 500
A	281:9	accumulation 44:7	actual 45:9 52:15	245:12
abandoned 12:22	accept 91:21	44:10 49:3,5	54:19 76:8 88:13	addresses 19:6
ability 17:1,20 18:1	306:22	54:22 56:13 57:6	89:12 158:5 187:1	addressing 26:14
36:1 45:8,12	acceptable 115:8	72:8 76:11 82:17	187:14 203:8,11	34:3 98:16 160:15
57:14 61:6 91:12	180:15 186:21	82:21 83:6 84:16	204:9 220:5,6	178:15 191:3,9
91:16 111:17	286:17	91:9 113:12,22	Adam 2:21 39:1	215:14
121:5 128:10	acceptance 3:10	121:12 128:21	add 132:7 158:21	adds 274:4
131:19 140:2	17:14 35:21 36:2	129:3,7 140:4	185:17 188:16	adequacy 48:12
151.19 140.2	36:8,18 37:2,6	152:19,22 153:9,9	233:9,11 234:9,12	74:2,4 78:22
194:15 195:2	43:20,20 51:15	163:2 164:1 167:1	235:16 246:15	93:14
204:2,6 224:21	58:7 130:18	174:13,15 181:11	250:21 273:14	adequate 8:15 9:1
235:11 268:21	162:13 183:1	181:16 186:5,8	added 36:18 43:8	29:16 44:20 48:1
269:2 270:11	212:5,8 213:22	216:19 218:19	234:15 239:18	80:8 86:8 106:20
209:2270:11	226:21 234:19	219:18,19	adding 43:9 56:10	107:8 125:13
able 61:17 74:19	239:9,22 245:8,19	accumulations	124:13 190:10	139:21 192:13
77:21 83:14 92:5	245:22 247:16,20	125:14 216:18	209:13 283:9	196:20 305:13
101:9 113:15	248:9 249:4	217:16	addition 18:8 153:5	adequately 17:2,20
101:9 113:15	260:15 265:3	accuracy 47:3	174:10 228:8	24:19 36:1 45:13
	272:8 273:22	155:20,22 156:8	252:6 264:18	91:2 108:16
121:10 134:17	286:5 288:20	157:12 158:11	additional 7:6	120:13 126:1
174:5 181:19	289:16	244:2,5	11:13 31:3 35:13	127:14 136:21
186:2,4,5,21	accepted 29:6	accurate 183:16	46:9 49:16 94:15	157:5 191:19
197:5 199:17	30:18 98:15 249:3	accurately 75:16	124:13 142:5	218:17 229:7
200:17 209:8	access 25:22 33:20	achievable 156:4	176:18 180:10	230:17
213:7,18 225:11 225:12 226:16,18	98:10 102:20	achieve 35:15 50:6	195:17 208:8	adhering 22:9
-	126:22	82:1 91:19 220:21	231:8 239:17	36:22
230:4,16 231:11 241:20 245:7	accessible 40:20	achieved 230:14	251:20 262:19	adjourn 7:17
249:3,7 276:6,8	accident 11:10	achievement 93:16	264:13 272:20	Adjournment 3:22
249:5,7 270:0,8	accidents 11:3	achieving 185:15	288:10,16 289:1	adjustment 109:18
	accommodate	acquisition 22:7	290:12	administrative
abrupt 303:4	43:16 222:17	28:18	Additionally 301:4	162:12 266:20
absolutely 107:2,3 124:21 164:4	accommodated	act 5:7 7:19 8:5 9:4	additives 186:14	admit 77:6
177:3 207:6 215:5	15:2	10:7 240:20 281:8	address 22:21	adopted 32:5
	accomplish 61:18	action 9:3	26:10 34:19 36:16	Adrian 3:17 293:17
215:11 222:2 288:13 289:19	188:12	actions 14:9 23:11	40:10 56:6 88:20	293:18 298:7
academia 13:10	account 81:16	31:2 268:9	90:16 138:15	advance 88:4 92:17
18:19 50:17 59:22	accountable 28:17	active 76:22 293:2	157:6 161:3	165:21 166:21
academic 77:3	137:21,22 138:1	actively 209:4	170:18 192:13	262:7,7
114:21	accounted 252:14	268:21	204:15,17,20	advancing 207:8
Academy 283:19	accumulate 52:1	activities 26:20	225:13 247:7	advice 13:9 68:4
accelerate 57:19,21	113:13 119:15	34:11 37:16	250:17 257:11	111:11 178:14
170:8 270:5	127:10 163:12	231:10 232:3,4	262:17 263:1	192:17
280:20 283:4,7	accumulated	233:19 273:12	282:4	advised 74:22
accelerated 32:5	119:10 120:11	activity 103:5	addressed 90:10	advising 13:2 71:18
57:21 240:18,21	accumulating	106:9 242:6	178:5 181:12	132:16
accelerating	18:13 41:18 83:18	249:17 282:1,11	191:19 192:7	advisory 32:21
268:15 270:18	218:6 219:9	282:15,19 283:10	207:2 237:3	95:11 193:18
200.13 270.10				
	1	1	1	1

affect 165:19	230:9 264:3 283:3	158:15 161:4	305:7	287:19
afford 298:14	292:11	163:16 165:17	approach 21:18,19	arrive 177:17
afforded 26:16	allowed 43:18	193:6 211:8	31:7 49:18 51:19	article 53:5 135:3,4
afternoon 293:20	53:12 201:13	214:15,19 229:22	52:4,6,16 53:1	Ashley 1:22 60:6
agencies 10:6	267:6	233:7 237:11	81:2,3 86:2 93:15	109:15 110:2,8,22
agency 301:13	allowing 97:17	241:20 245:6	97:3 116:10,11	111:19 112:12
agent 48:8 304:11	201:9	247:11 273:14	136:4 140:10	113:7,11 118:2
aging 23:1 296:18	allows 30:10 96:14	275:7 277:7 288:5	188:18 191:6	123:5,18 124:19
agitate 18:10	101:6 231:15	288:15 298:4	215:16 231:2	128:18 131:1,5,9
ago 104:9 142:19	255:6	answered 139:2,3	262:16 269:1	138:18 139:15
166:11 193:11	alternative 17:15	175:17	291:13 292:22	146:4,8 152:18
204:11 227:6	156:13	answering 220:17	approached 77:1	153:2,4,14 154:9
229:4 250:9	alternatives 226:9	288:14	approaches 74:6	154:11 178:21
264:22 265:17	amended 7:20	answers 15:18,19	83:2 155:13 189:1	179:2,14 180:22
296:22	AMERICA 1:1	16:4 143:13 234:4	approaching	194:11,19 206:14
agree 63:6 80:5	American 240:20	241:1 244:16	271:22 307:8	206:15 207:5
88:13 116:14	amount 43:18	answer's 249:10	appropriate 7:12	219:12,15 220:1,4
126:8 158:21	63:13 120:18	anticipate 287:20	23:12 31:13 33:21	228:4 229:21
159:1,15,16 160:2	209:7 216:2 233:5	anticipated 85:17	37:18 81:20 94:11	asked 19:14 71:4
160:11 170:22	233:8,10 236:5	anticipating 293:10	96:11 100:9 114:4	78:19 79:1 92:20
201:18 214:3	252:14 254:16	anybody 182:4	117:1 133:14	99:10 113:10
229:5 259:17	292:20	262:6	150:5 171:12	127:10 132:9
262:10,11 274:2,7	amounts 18:10	apologize 92:17	182:9 186:22	140:13 166:13
277:17	44:11 62:10 65:10	277:8,22	233:9 240:4	190:1,19 195:10
agreed 100:9	174:21 253:10	apparatus 188:21	250:18 257:17	197:2 216:4 230:4
agreement 111:12	analyses 108:18	apparent 303:15	appropriately	242:11 243:14
143:6 159:18,20	239:19	apparently 46:11	15:13 30:19 31:18	261:18 283:18
164:11 166:18	analysis 64:8 87:16	appear 80:8 136:2	117:15,17 126:5	289:6,9
171:4 172:1 177:1	87:17 88:21,21	227:1	237:19	asking 69:16 182:8
221:7 280:8,17	112:10 134:9	appeared 107:7,8,9	approved 108:15	227:3 279:6
290:22	154:7 161:11	appears 19:20	approximately	aspects 28:6 127:8
agrees 55:13	162:21 165:4	84:14 85:6 184:13	165:21 224:4	241:6
ahead 154:20 162:2	180:14 228:14	306:5	236:11 294:7	assess 29:21 32:22
172:16 175:6	250:19 254:4,10	apples 68:13,13	295:7 303:3	127:3
188:4 203:20	254:19	application 48:13	April 137:8	assessment 29:8,9
263:14,17	analytical 242:17	63:11 64:20 66:19	aquifers 291:18	29:12 30:3,22
air 41:9,11 44:13	288:17 289:2,7	240:19	area 48:2 49:22	33:4 50:18 64:7
44:14 53:17	analyze 89:10	applications 62:9	72:18,21 105:3	92:5 93:21 94:3
112:14 180:1,2	188:3	63:21	145:7,8 149:10,15	97:19 98:3 135:5
181:3	analyzed 134:7	applied 72:2 101:3	272:14 294:6	136:16 137:4,15
alarm 230:15	187:4 253:21	128:7,7 138:6	295:8	161:7,13 164:20
aligned 225:15	ancillary 154:4,12	207:1 283:2 284:8	areas 16:18 17:1	215:18 219:16
aligning 34:22	and/or 107:19	applies 252:17	32:12,12,13 74:21	236:3 263:2 282:5
alignment 225:20	angles 272:2	apply 189:6 207:6	187:22 196:16	285:4
allow 6:19 33:7	answer 16:12 58:9	265:4	237:22 285:2	assessments 60:1
42:15 133:2	61:4,8 68:6 81:4	appreciate 21:5	arisen 85:21	139:11 140:15
181:13 203:21	92:18 93:6 138:20	227:20,20 291:12	ARRA 240:19	180:13 208:11

				Page 51
267:21	attainable 37:13	B	204:12	bat 65:13
assigned 23:13	attempt 123:4	B 181:19 190:8	ball 271:3	batch 37:4 126:13
95:22 304:10	attempted 48:17	271:19	band 65:17 158:15	129:19,20,21
assigning 24:9	49:22 51:6	back 73:16 93:11	158:17	130:5,8 162:1
assist 24:2	attempts 299:21	99:5 117:19,20	based 36:7 47:5	179:18,18 187:19
assistant 20:11,19	attention 32:13	127:20 133:3	53:4 55:17 75:11	218:2,8 236:21
25:21 32:18 59:2	306:20	143:3,8 148:8,9	85:6 92:19 93:17	237:8 239:12
70:21 228:11	at-risk 37:7	143.3,8 148.8,9	95:19 106:3,17,18	247:10 264:11
assisting 299:17	audience 279:16	164:9 166:13	112:6,14 123:10	274:10,14 275:10
associated 5:15	290:14	167:3 173:4 175:2	136:19 140:22	batches 58:7
20:4 40:11 45:5	auditorium 6:7		156:7 158:2	172:17 213:7
48:3 57:2 82:18	August 16:14 48:10	183:5 194:1	162:18 167:20	219:6 222:14
94:4 95:13 111:16	author 59:10	198:22 204:18	174:14 192:19	232:12,13 237:5
111:20 123:9	authority 7:19,22	218:21 226:15	203:14 207:18	244:15 248:8
138:8 150:11	95:3 142:2 291:3	250:4 257:14	217:15 226:17	263:22 264:4
164:21 208:4	304:11,15	264:12 267:15	247:21 250:11	273:22 275:12,21
210:21 224:9,13	authorization	279:10 288:7	251:22 257:15	276:4,11
224:18 254:5	255:2,6	backed 86:1	266:21 289:13	beads 79:9
276:17 281:4,8,13	authorizing 304:13	background 11:13	302:17	bears 133:13
assume 76:17 87:5	available 5:12,14	99:12 170:12	baseline 271:12	Bechtel 19:16 24:6
256:18	5:16 15:20 24:2	bad 132:19	273:6,12 280:1	24:9 33:13 43:1,1
assumed 28:8 53:2	31:15,21 63:4	Bader 1:15 4:13	281:17,21 289:4	60:3,6 62:18
	,	154:18,19,22		,
53:7 234:11	112:13 140:20	157:10 158:14,20	baselines 22:10	297:17 301:16
assuming 91:21	141:2 145:9 146:3	159:12,17,21	29:1 38:3 225:1	302:17,19 304:12
220:20 223:10	179:18 205:9,15	160:3,6 161:1,15	bases 172:3 255:6	304:12 305:1,10
289:13,17	207:4,6,21 220:14	161:20 162:7,22	255:13,20 256:14	Bechtel's 59:11
assumption 78:7	269:16	163:8,18 164:8,17	basic 77:18 159:2	Beck 261:17
82:8 156:6	avenues 31:21	165:8 166:3,6	basically 67:19	bed 82:22 114:11
assumptions 37:7	average 128:3	167:2,14,18 168:2	99:18 114:6	119:9 120:6,10,19
47:6 82:11 104:12	avoid 41:17 140:4	168:21 169:2,16	115:13 126:13,16	began 11:16 12:21
140:12	avoiding 84:15	169:22 170:3,6,11	127:9 145:11	15:16 49:16 78:20
assurance 60:10	avoids 18:16	170:14 171:13,18	151:15 199:14	100:8
269:9 305:11	awarded 33:16	172:5,8,10,15,17	233:8 236:12	beginning 6:12 8:5
assurances 34:20	aware 76:18 80:16	174:8,17 175:5,7	271:15	77:7 110:19
assure 29:14 58:14	87:13 104:22	175:18 176:10,17	basis 13:4 31:11	127:10 169:17
124:11 180:4	140:11 191:17,20	176:20 177:18,21	37:8 39:12 46:3	252:1 266:14
255:17 305:12	192:1 250:3	216:14 220:10,11	48:6,12 50:22	begins 8:12
307:4	257:10 266:18	221:22 222:7	51:2 54:2,15,21	begun 9:8
assured 44:22	awareness 74:20	223:3,9 225:22	76:4,10 85:12	behalf 21:9
190:16	75:12	226:5 227:4,15	109:2 112:14	behave 52:21
assuring 22:10	axes 102:9	230:4 249:11,12	116:4 119:11	196:15
23:6	axis 102:2,6 105:8	252:19 254:3,11	120:3,6 122:5	behavior 53:15
as-received 198:5	Azzaro 1:19 4:16	254:13 256:1,8	135:20 158:5	111:5 140:18
atmosphere 306:14	307:15	257:1,6,22 259:10	175:8,11 203:3	196:15
Atomic 7:19 8:5	AZ-101 276:18	260:10	205:6 253:5 255:2	belief 302:8
10:7	AZ-102 276:19	Bader's 228:20	265:8,12 270:13	believe 63:22 66:15
attaches 21:13	a.m 4:2	balance 90:18	286:6	81:5 91:8 93:3

	•	•		
100:22 114:2,3	biggest 188:13	290:1,17 293:14	breakers 211:15	281:16 282:2
116:21 124:20	billion 89:12 306:4	297:1 305:8	brief 20:21 28:4	283:12 284:10
126:5 133:10,20	bit 62:13 112:11	Board's 3:4 4:15,17	216:13 285:17	bubbler 172:19
156:7 158:2	132:7 134:4	5:10,12,17,18,20	briefly 40:16 45:15	bubblers 49:6
162:11 163:13	154:16 223:4,7	7:21 8:3,7 9:9	70:14 71:17 97:14	bucket 90:5 97:22
165:4 166:8 167:8	232:10 238:11	10:1,5 12:20	99:14 141:17	budget 21:15
167:20 171:1	261:19 277:4	15:11,18,20 17:17	292:19	137:21 138:15
172:1 174:22	black 14:20 40:18	19:10 38:16 39:3	bring 25:7 33:22	build 205:14 305:1
176:22 177:10	40:19,22 41:4,6	39:6,8,10 53:10	130:3 176:22	building 18:11
189:22 191:18	67:7,14	55:13 181:14	177:5 203:22	209:21 301:14
195:19 197:2	blend 248:11	307:14	220:22 300:6	304:17 305:2
204:16 208:6	264:12	BOD 265:12	bringing 210:21	306:4
213:13 224:17	blended 236:20	body 142:12,18	British 48:7,10	buildings 210:14
225:3 229:12	275:9	303:7 304:19	broadcast 5:8	buildup 40:4
236:4 237:8 238:1	blending 106:6	bottom 41:21 42:1	broader 294:12	171:20
238:6,18 242:10	186:18 187:18	42:4,6,15 49:4	Brockman 1:22	built 34:5 138:21
242:15 243:13	247:8 272:7,20	50:7 52:2 79:13	228:8 256:3,4,16	162:1 209:8 227:7
244:17 247:20	block 67:10	83:9,12,15,19	290:3	burdens 44:3
254:4 260:6	blows 44:14	84:2 86:3,9	brought 70:4 74:7	bursting 40:5
264:17 267:3	BNFL 48:10 73:18	100:13 102:14	77:20 130:4 261:8	Busche 1:23 60:12
270:6 271:5	BNI 1:22 2:14 43:1	105:14,17 110:13	Brown 1:16 4:11	65:2,3,11 66:15
275:12 280:4	43:5 44:17 45:4	110:16,19 111:3	177:22 178:1	66:22 67:6 68:5
290:13 303:22	48:17 49:16 51:5	112:5 113:16,20	179:9 180:18	68:19 69:16 160:4
believed 117:3	51:11,19 52:10,12	112:3 113:10,20	181:9 183:3,13,19	160:5,11 161:3,18
302:1	53:7 54:1,5 56:10	116:3,17,21	185:2,4,9,13	162:3,8 163:6,9
believes 40:8 42:18	56:14 72:14 90:22	117:10 118:16	186:9 187:16	164:4,14,18 167:3
57:16 245:18	100:8	119:12 122:19	188:14 189:8,20	167:12,15,19
bench 278:12	BNI's 50:19 53:1	126:15 128:20	189:21 190:3	169:4,18 171:17
benchmarked	board 1:3,10,15,16	130:16 131:11,12	191:11 192:6	174:2,7,11,20
79:21	1:17 3:3 4:5,9,14	131:14,17 135:17	193:3,15 194:10	175:6,11 181:12
benchmarking	6:6 7:10,15 8:9,14	135:20 139:20	195:1 197:11	255:8 285:21,22
80:4	8:18,22 9:3,15	144:19,21 145:12	198:7 199:19	290:4
benefit 253:9	11:1,8 13:2 14:2	145:14 147:1,19	200:6 201:3,17	business 67:9
Benton 294:1	14:16 16:11,13,20	147:22 148:9	204:22 206:13	227:10
best 61:5 90:15	20:1,7 21:3,4 25:6	149:12 150:10	207:3 208:12,16	butter 234:6
137:3 160:10	26:11,15 27:22	152:1 186:2 200:1	209:2,18 210:17	
164:11 168:16	32:21 34:9,19	217:17 218:1	211:5,10,21 212:2	C
177:5 224:20	38:21 39:19 40:8	219:2	212:16 214:7,10	C 154:10
better 126:22	45:11 52:12 56:14	bottoms 125:15	214:17,20 216:8	cadre 255:2
167:21 198:18	57:16 58:9,12,15	bottom-clearing	228:17 229:3,18	cake 35:6 234:10
207:19 263:21	61:2 95:11 99:9	81:2 114:3 122:18	230:2 231:19	calculate 102:13
264:4	107:17 171:6	Boulevard 1:12	232:5 267:10,11	calculations 46:10
beyond 23:3	190:9 191:2 213:3	bound 46:21	270:1,17 271:7	219:13
171:19 226:11	215:22 228:1	bounding 203:4	273:4,8,19 274:21	calendar 155:18
big 30:3 151:2	230:19 238:21	bounds 203:12	275:18 277:9,18	266:14 272:12,12
218:15 247:17	251:14,17 267:17	204:7,10	277:20,20,21,22	call 6:10 90:8
277:13 295:8	271:11 284:19	break 103:11 200:3	279:4,9 280:11	121:14 162:12
			,	
	1	1	1	1

190:8 228:6	194:9	297:3	141:9,13,16 144:3	293:11
232:22 241:17	Carl 3:17 293:17	certainty 173:21	154:14,15 177:20	changing 108:4
247:1 283:17	Carpenter 3:19	certification	190:18 208:13,15	182:13 186:10
286:15 287:2	298:8,9,16 303:8	286:14	214:11 216:9,11	characteristic
290:7	303:10,12 307:1	certified 33:14	217:1,9,13 218:4	114:13 149:18,19
called 61:19 129:4	carried 121:16	certify 153:1,12	217.1,9,13 218.4 218:12 219:10,20	characteristics
142:12 209:13	122:4	•	220:3,8 227:15,17	45:17 72:2,16
263:3 298:17		certifying 152:20 188:19 286:16	228:17,21 232:6,7	43.1772.2,10 77:5 104:10
	carry 34:5	cetera 287:13	232:9 238:20	106:22 182:6
calling 236:9 calls 281:22	carrying 9:6 cascade 180:7	CFD 153:16,18		
		,	249:6,11 260:12	187:7 188:10,11
cameras 91:16	case 10:10 11:1	chair 1:15 4:10 7:5	261:14 265:7	197:22 198:3
173:3 194:16	105:12 143:19	70:9 71:11,16	266:6,10 267:9,12	199:1 201:1,12
candid 161:4	283:5	72:17 73:8 74:9	279:18 284:12,13	203:8 247:4 258:5
canyon 252:9	cases 80:19,20	74:17 75:10 76:15	284:17 289:20	274:9,10
canyons 67:9	103:10 104:17	77:13 78:6,14	293:16 298:6	characterization
capabilities 98:9	107:18 197:20	82:4 87:1,9 89:1,6	303:8,11 306:21	12:5 45:6 46:2,9
194:22 199:7,16	catastrophic	89:21 92:14 97:11	challenge 3:20	46:16 57:1,19
205:9 272:14,20	291:22	97:14 98:21	42:12 164:19	95:18,22 96:7
273:2 274:19	catch 214:22	142:14 144:2	261:5 298:17,22	115:7 204:4
288:10	cause 49:6 127:20	chairman 1:12,14	challenges 45:4	213:14 251:8,10
capability 17:16	162:9 206:9	3:3 4:3,4 21:2	47:10 48:1 67:4	251:16 262:20
45:13,22 56:2,11	276:13	24:5 27:21 34:16	105:1 160:12	268:15 269:5
57:10 58:3,6 72:5	caused 158:17	38:13,21 58:11	182:13 187:21	270:2,5,7 288:21
169:12 173:7	caveat 104:7	59:19 60:19 63:5	189:9 198:10	characterize 73:10
180:11 198:12	127:18 143:7	63:10,15 64:11,22	260:20	82:19 106:19
222:21 223:19	170:21	65:4 66:12,17	challenging 11:22	164:11 176:1
244:14 270:22	ceiling 89:12	67:2 68:1,16	45:3 116:16	188:4 224:7,12,21
273:14,21 282:1	cell 40:19 67:7,14	69:15,18 70:7	183:15,16	247:13 259:13
282:11,14,15,19	cells 14:21 40:19,22	96:18 99:1,3,22	chance 109:12	261:2 269:7
283:10	41:4,6	100:12,16 101:8	170:16 178:7	characterized 96:4
capable 55:20 83:8	Center 1:11	101:14,22 102:5	change 5:3 42:9	197:15
213:6 222:13	centers 210:13	103:1,21 104:16	43:5 84:12 94:20	Charboneau 1:23
261:9 301:14	centrally 187:2	105:5 106:1,17	105:4 114:14	20:19 28:4 34:15
capacity 190:11	CEO 3:17 293:20	107:2,11,16 108:3	129:11 136:5	34:18 38:14
223:18	certain 71:2 104:12	108:9,22 109:5,16	170:18 182:19	228:10 232:20
capital 22:6,15	123:21 181:2	109:19 110:3,17	253:2	233:14,18 234:2,4
90:18 94:1 294:11	215:12 296:9,10	111:18 112:6	changed 42:4 81:1	234:7,22 235:10
captured 87:16	certainly 63:6	113:3,9 114:1	107:21 129:6	243:16,21 244:22
224:16	70:17 72:8 77:1	115:17 116:13,19	168:5	245:3,10 246:1,5
capturing 150:6	77:19 116:16	117:5,18 118:18	changes 14:20 37:9	246:7,21 249:9,13
carbide 85:1	159:6 176:11,14	119:16,22 123:1	37:12 80:18,19,20	250:3 257:2,8
care 198:8 202:19	187:5 193:7	123:14 124:15	94:21 107:13	266:9,12 271:6,8
299:13	198:18 201:19	125:8,20 126:7	136:1 180:8	273:7,10 275:16
career 73:1	205:18 213:1	127:12 128:14	195:17 196:12,17	275:22 280:7,13
careers 300:19	214:18 225:19	130:19 131:3,6,21	230:5,11,17	281:20 287:8
careful 95:6 276:13	227:18 255:13	133:16 135:2	245:12,14 260:17	288:12 290:4
carefully 61:3	261:4 262:15	139:5,16 140:5,22	265:8,12 292:21	Charboneau's
	l	l		

271:3 **clean-out** 173:2 cohesion 172:7 communicating **comment** 118:21 194:21 176:4 182:4 264:19 **charge** 9:10 10:11 201:11.14 communities **charging** 41:10,14 clear 19:7 113:8 **cohesive** 194:18 185:18 186:10 122:18 131:19 197:9 294:20 charter 10:5 190:2.14 198:8 chartered 24:16 cohesiveness 172:8 community 27:1 136:14 144:18 202:19 205:13 95:10 178:8 194:7 172:9 199:10 229:4 230:18 63:14 294:5,9,17 **cheat** 106:11 240:10 282:12 **coined** 67:15 239:3 255:9 257:3 294:19 295:4 Cold 294:21 296:7,14,16 297:5 cheating 127:4 **cleared** 50:1 258:4 290:18 **check** 159:13 120:14 145:7 colleague 27:18 307:10 297:20 177:13 **clearing** 42:5 53:14 28:2 commentary 98:12 compaction 201:7 chemical 11:20 110:19 111:3 colleagues 4:9 commented 151:14 201:8.15 13:10 24:12 47:6 116:17.22 117:10 92:16 97:5 193:8 companies 73:2,2 **collect** 153:22 74:5 198:2 118:16 119:13 **comments** 5:16.22 company 115:5 chemical-based collecting 137:7 213:10 122:6,17,22 7:6,7 95:17,20 157:2 135:17 145:6,13 collective 27:11 96:21 97:3 157:7 compared 47:19 chemistry 12:1 150:11 167:10 Columbia 27:15 159:22 176:10,19 85:16 102:21 clearly 51:1 69:20 49:21 81:12 237:18 187:21 192:3 145:7 295:9 **childhood** 209:19 88:7 115:1 116:18 135:13 291:18 193:21 194:3 comparing 68:13 **children** 199:11 102:11 161:8 227:11 **column** 284:5 214:13 228:20 **chilled** 303:22 287:15 304:12 **columns** 246:17 254:12 256:3 compatibility 237:20 253:20 **chime** 97:17 clog 79:16 246:17 combination 49:18 269:19 279:18 77:3 188:11 **choose** 195:21 **close** 36:16 94:14 290:12 299:10 257:12.20 **chose** 54:1 95:6 128:5 158:6 236:19 306:19 307:1 compelling 53:21 **combinations** 73:2 **chosen** 61:3 199:20 215:20 commercial 65:16 competence 153:7 circulate 219:5 219:14 223:13,22 199:3 commission 26:12 compiled 47:15 civil 302:16 269:8 285:3,11 **come** 58:22 85:4 35:1 226:16 **complete** 13:18,20 **claimed** 302:12 301:5 307:11 109:11 131:11,15 304:20 305:17,22 13:22 16:5 23:7 commissioned 24:8 27:13 29:1 clarification closed 33:5 62:20 142:15 154:16 114:17 137:17 244:13,15 245:4,5 163:17 167:3 14:17 35:2.11 38:3.6 141:17 245:11 195:6 210:19 commissioning 50:11 66:1 93:7 **clarify** 132:7 **closely** 4:19 26:2 218:2 264:12 14:5 15:3,7 29:18 230:16 273:9 134:11 160:18 34:1 36:15 274:22 279:12 31:5 33:8 34:13 296:18 297:2 169:5 201:4 **closing** 33:17 306:8 285:4.6 288:7 38:9 56:5 209:6 completed 25:5 **clarity** 171:17 **closure** 32:22 36:10 31:19 33:4 39:7 **comes** 21:16 209:14,20 211:3 class 91:5 224:20 64:10 87:22 88:2 101:13 114:7 224:5,6 231:6 48:8 56:19 108:14 **classic** 123:9 93:16 94:15 95:12 142:17 188:3 268:22 287:11,16 134:12,15 137:8 classification 97:4 133:21 205:20 226:15 288:1,8,19 141:19,20 142:4 297:11 153:16 188:22 230:18 **commitment** 24:7 143:18 163:11 **clean** 54:22 76:11 29:7 31:5 98:17 192:20 251:17 comfortable 82:12 165:12,20 167:9 **closures** 245:17 91:8,22 92:11 142:9 282:8.10 cleaned 295:3 223:10 263:22 **cleanup** 12:4 28:12 cloud 52:7 102:14 115:18 140:7 293:14,15 268:19 280:2 35:3 49:8 216:7 123:5.11.12 **coming** 160:4 commitments 292:4 295:13

Neal R. Gross & Co., Inc. 202-234-4433

167:22 182:10

201:2 230:21

260:14 281:11

302:7 307:15

198:22 199:5,14

281:18

215:13

committed 22:5

23:6 26:14 34:3

56:7,17 215:2,6

297:6

completely 83:1

100:7 116:8,9

120:5 136:14

completing 25:14

279:22 280:20

283:6,11 284:7

290:21 294:22

297:6,9,22

281:5 282:17

code 252:7,10,16

coefficient 113:17

cognizant 251:2

252:17.18

118:14

216:9 290:5 confirmed 142:3 consolidate 272:4 34:10 224:1 108:4 135:15 307:10 consortium 50:13 244:19 280:9 199:9 237:9 301:18 completion 10:2 **concept** 48:13 **conclusion** 6:2 32:9 confirms 259:4 50:15,17 59:20,22 21:14 57:22 94:19 **conflict** 304:13 159:2 286:20 75:17 95:15 69:20 conceptual 31:14 confounded 119:7 95:16 104:14 125:17 constituents 130:8 **complex** 10:12 48:9 138:17 **confused** 144:15 130:10 247:4 conclusions 55:14 22:16 23:22 38:10 conceptualized congealed 199:22 constitute 4:14 140:7 184:1 80:2 111:6 121:20 269:15 Congress 89:13 constraints 187:15 133:11 135:4 **concern** 40:9 59:12 concurred 95:3 congressional **construct** 162:16 174:1 175:22 82:15 83:6,13 condition 120:15 295:21 296:1,6 constructed 11:18 196:15 216:4 87:10 88:12 184:9 conditions 80:20 conjunction 87:18 143:18 292:11 consensus 220:19 224:11 227:9 225:10 96:16 104:9 107:1 constructing 26:12 276:8 294:19 concerned 14:16 107:20 108:13 221:7 269:4 construction 8:8,11 complexity 292:13 156:22 182:20 115:11 121:13 **consent** 291:1,2 8:17,19,21 9:6 293:2 296:3 259:6 296:8 304:2 135:14 194:17 Consequently 10:3,12 11:2 complicated 172:2 287:2,3,4 10:22 13:20 14:4,4 concerning 7:8 concerns 13:3 conservatism 31:13 component 134:21 conduct 56:7 22:14 23:15 25:15 160:17 169:13 16:20 17:19 19:2 conducted 84:17 31:17 138:21 32:1 33:10 34:12 components 14:11 19:21 26:10,15 84:18 135:12 253:10 35:10 39:7 56:4,5 14:13 37:19 38:4 36:20 39:22 40:10 256:12 56:15 143:2 209:6 conservative 51:16 41:5 75:12 76:19 77:14 conducting 32:14 81:20 86:16 88:11 209:12 230:20,22 composition 47:6 77:17 78:11 82:6 52:18 282:21 101:12 126:6 244:20 271:13 186:13 251:11 82:7 87:2,6,14,18 confidence 26:20 127:6 175:12,15 291:4 295:12,16 252:7 87:20 88:3,20 30:16 31:3 91:17 195:22 305:7 296:19 300:16 89:4,9 90:2,10,13 301:3 305:10 comprehensive 92:9 98:19 134:18 conservatively 56:22 163:16 92:22 93:2 95:21 139:12 177:4,17 118:14 construct/commi... 292:15 97:20 98:6,15,15 204:8 241:9 244:3 consider 90:6 21:19 25:13 consult 176:21 compressed 44:14 98:16 133:6,18 246:9 296:15 180:9,10 181:7 136:9,20 137:3 compressors 181:2 297:13.16 301:12 292:3 191:13 181:4 138:16 140:12,20 303:21 considerable 43:3 consultant 1:24 comprising 6:3 confident 45:12 178:18 183:5 120:1759:8 Computational 190:15,17 191:10 90:22 178:16 considerably 66:21 consultants 19:9 consideration 7:5 153:17 193:2,10 202:5 configuration 87:15 88:12,22 11:21 192:18 118:4 171:5 concentrate 17:19 206:22 215:14 concentrated 216:1 217:16 configure 90:12 considered 26:8 consultation 74:8 238:14 **confirm** 93:14 30:17 46:17 87:19 118:3 224:13 299:18 concentration 300:6,8,20 301:1 94:22 118:7,13 178:19 181:7 consulted 137:9 42:21 45:6 51:13 301:5,17 302:9,14 142:1 143:9 203:1 269:22 274:20 consulting 74:1 78:4 79:14 84:3,4 302:20 303:12 203:4 215:1 305:16 111:11 304:1,3,9 306:9 289:12 considering 194:9 contacted 6:6.8 100:11 102:21 105:9,13 128:2 306:16 confirmation 283:8 **contain** 40:22 184:11,15 185:8,9 **conclude** 175:13 153:19 154:1 **considers** 8:15.22 contained 48:16 186:1 217:21 concluded 5:13 205:10 consistent 39:7 54:6 218:10 32:2 48:14 49:13 confirmations 65:17 115:11 containing 18:3,7 54:7 72:3 80:6 166:16 contaminated concentrations 160:6 48:4 55:20 105:18 confirmation-rea... consistently 295:22 303:19 274:17

Neal R. Gross & Co., Inc. 202-234-4433

consists 215:16

contemplated

56:20

105:22 107:22

concludes 20:6

		1		1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	156:19	controlled 255:12	correlation 125:7	214:4 268:8,12	183:12 195:5
contents 44:15 controls 17:7 54:12 81:10 112:18,19 50:21 \$1:6 54:3 231:13,19 232:1 155:21 76:1 155:8,14 124:19 132:11 55:14 70:18 71:6 243:16,21,22 233:6 175:3 237:21 86:12 193:18 202:2,47 reiticality 3:10 content 10:2 257:21 2599 cott 2:9 28:22 205:4 206:7 18:14 37:9 449 32:14 38:15 70:6 266:19,20 293:2 32:4 38:2 225:2 CRESP's 205:3 54:12 57:11 75:22 168:4 213:12 controversial 92:8 306:12 crews 209:20 91:10 140:4 155:5 continues 169:3 Convention 1:11 counst 293:21 36:19,21 37:36 162:45,15,16 301:8 convince 125:13 307:14 51:15 52:5 79:10 163:5 165:5 continuing 9:9 contine 37:11 counterparts 9:22 88:17 99:20 100:1 170:9 174:5,11 contract 24:21 coordinated 37:11 counter 978:19 103:15 105:15 249:14,15,22 240:17 255:3 conying 51:7 166:11 189:17 112:1 114:20,21 250:5,7,10 253:22 23:16 32:63:12 core 259:21 100:3:15 103:41		0			,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	242:2 243:14				
$\begin{array}{c} \mbox{context 139:3} \\ \mbox{continue 10:2} \\ \mbox{23:6} \\ \mbox{continue 10:2} \\ \mbox{23:7:21} \\ \mbox{23:14} \\ \mbox{38:15} \\ \mbox{70:6} \\ \mbox{26:619,20} \\ \mbox{29:32:2} \\ \mbox{29:29,22} \\ \mbox{20:29,28:22} \\ \mbox{20:29,28:22} \\ \mbox{20:20,20} \\ \mbox{20:20,20} \\ \mbox{20:20,20} \\ \mbox{20:20,20} \\ \mbox{20:21,21} \\ \mbox{20:20,21} \\ \mbox{20:21,21} \\ \mbox{20:20,21} \\ \mbox{20:20,22} \\ \mbox{20:21,21} \\ \mbox{20:20,22} \\ \mbox{20:21,22} \\ \mbox{20:21,21} \\ \mbox{20:21,21} \\ \mbox{20:20,22} \\ \mbox{20:21,21} \\ \mbox{20:21,22} \\$			· · · · · · · · · · · · · · · · · · ·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,			
			i 0		
32:14 38:15 70:6 266:19,20 293:2 32:4 38:2 225:2 CRESP's 205:3 54:12 57:11 75:22 108:4 213:12 controversial 92:8 306:12 crews 209:20 91:10 140:4155:5 continues 169:3 Convergine 35:17 council 293:21 36:19,21 37:3,6 155:8,34 156:15 continues 169:3 convergene 35:17 counsel 1:19 4:15 42:4,11 43:20,21 163:5 165:5 continues 22:5 convince 125:13 307:14 51:15 52:5 79:10 165:1 163:5 165:5 contract 24:21 coordinated 37:11 counterparts 9:22 88:17 99:20 100:4,9 102:19 175:4 214:2 224:3 240:17 255:3 copying 5:17 166:11 189:17 112:1 114:20,11 250:5,7,7 10 253:22 256:13 263:12 corre 259:21 190:6 193:11 114:22 115:13.15 254:5,10 255:4 33:14 44:4 58:19 28:11 210:15 221:18 133:15 139:19 256:5,7,7 10 253:22 256:13 20:31 106:16,21 107:6 coupled 65:21 153:8,10,16 154:5 256:14 137:18,19 140:21 correct 65:2 101:21 250:16,22 279:20 130:6,14,17 critically 274:14 137:18,19 140:21					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c} \mbox{continues} 169:3 \\ \mbox{continues} 169:3 \\ \mbox{convergencs} 35:17 \\ \mbox{convince} 125:13 \\ \mbox{convince} 125:13 \\ \mbox{convince} 125:13 \\ \mbox{convergencs} 35:17 \\ \mbox{convince} 125:13 \\ \mbox{convince} 125:14 \\ \mbox{convince} 125:15 \\ \mbox{convince} 125:17 \\ \mbox{convince} 125:11 \\ \mbox{convince} 125:12 \\ \mbox{convince} 125:11 \\ \mbox{convince} 125:12 \\ conv$					
$\begin{array}{c} \mbox{continues} 169:3\\ 301:8\\ 301:8\\ 301:8\\ convergence 35:17\\ continuing 9:9\\ convince 125:13\\ 244:19\\ 141:5\\ convergence 35:17\\ 141:5\\ 307:14\\ 309:20\\ 100:19\\ 175:25:79:10\\ 107:19\\ 175:221:22\\ 240:17\\ 255:3\\ 249:14,15,22\\ 240:17\\ 255:3\\ 249:14,15,22\\ 240:17\\ 255:3\\ 249:14,15,22\\ 240:17\\ 255:3\\ 249:14,15,22\\ 240:17\\ 255:3\\ 249:14,15,22\\ 240:17\\ 255:3\\ 249:14,15,22\\ 256:8,9,12\\ 33:14\\ 44:4\\ 58:19\\ 28:11\\ 210:15\\ 221:18\\ 249:14\\ 114:22\\ 115:13,16\\ 245:14,22\\ 256:14\\ 250:16,22\\ 279:20\\ 100:61,41,7\\ 255:21\\ 256:14\\ 251:14\\ 220:15\\ 221:18\\ 244:22\\ 255:16,22\\ 279:20\\ 100:61,42,7\\ crucial\\ 157\\ crucial\\ 157$, i i i i i i i i i i i i i i i i i i i		-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					·
continuing 9:9 convince 125:13 307:14 51:15 52:5 79:10 167:11,12,14 244:19 141:5 counterparts 9:22 80:9,11 81:1,8,19 168:1 169:20 continuous 22:5 convincing 132:4 countes 294:2 88:17 9:20 100:1 170:9 174:5,11 213:15 235:20,21 copy 25:5 307:14 country 177:6 100:4,9 102:19 175:4 214:2 224:3 240:17 255:3 copy 25:5 307:14 counter 97:8,19 103:15 105:15 249:14,15,22 256:13 263:12 correct 259:21 190:6 193:11 114:22 115:13,16 255:21 256:8,9,12 33:14 44:4 58:19 28:11 210:15 221:18 128:20,21,22 256:14 59:10 75:4 109:22 Corporation 19:17 229:4 234:4 129:3,4,6,7,9,16 critically 274:14 137:18,19 140:21 i06:6,21 107:6 couled 65:21 153:8,10,16 154:6 crosse 285:16 244:14,2 256:20 107:15 108:1,8 course 7:16 85:19 162:13 164:5,7 cruial 15:7 263:10,12 287:10 109:4,15 110:2 107:3 198:4 242:6 171:3 174:13 cruse 15:5,7,17 264:17 75:6 96:8 179:1,2,14 180:22 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
244:19141:5counterparts 9:2280:9,11 81:1,8,19168:1 169:20continuous 22:5convincing 132:4counties 294:288:17 99:20 100:1170:9 174:5,11contract 24:21coordinated 37:11country 177:6100:49 102:19175:4 214:2 224:3213:15 235:20,21copy 25:5 307:14couple 79:8,19103:15 105:15249:14,15,22240:17 255:3copy 25:20190:6 193:11114:22 115:13,16254:5,10 255:14contractor 20:4cornerstone 22:20202:3 206:6116:17 127:7255:21 256:8,9,1233:14 44:4 58:1928:11210:15 221:18128:20,21,22256:1459:10 75:4 109:22Corporation 19:17229:4 234:4129:3,4,6,7,9,16criticize 233:4173:18,19 140:21correct 65:2 101:21250:16,22 279:20130:6,1,4,17criticize 233:4193:20 253:1106:16,21 107:6coupled 65:21153:8,10,16 154:6crosses 285:16254:14,22 256:20107:15 108:1,8course 7:16 85:19162:13 164:5,7crucial 15:7263:10,12 287:10109:4,15 110:2107:3 198:422:6174:13 174:13crystalline 85:2287:15 288:3128:18 130:22255:4 299:3,7183:2 21:6,8CSSG 256:11251:18 294:15179:1,2,14 180:22cover 61:2 67:10234:19 238:8253:2,5,16 254:7201:10 11:21 17:4243:9 244:21,22cover 61:2 67:10234:19 238:8253:2,5,16 254:7201:11 17:4243:9 244:21,22cover 61:2 67:10234:19 238:8253:2,5,16 254:7201:12 117:4243:9 244:21,22c		0	counsel 1:19 4:15		163:5 165:5
continuous 22:5convincing 132:4counties 294:288:17 99:20 100:1170:9 174:5,11contract 24:21coordinated 37:11country 177:6100:4,9 102:19175:4 214:2 224:3213:15 235:20,21copy 25:5 307:14coupe 79:8,19103:15 105:15249:14,15,22240:17 255:3copying 5:17166:11 189:17112:1 114:20,21250:5,7,10 253:22256:13 263:12core 259:21190:6 193:11114:22 115:13,16254:5,10 255:14contractor 20:4cornerstone 22:20202:3 206:6116:17 127:7255:21 256:8,9,1233:14 44:4 58:1928:11210:15 221:18128:021,22256:1459:10 75:4 109:22Corporation 19:17229:4 234:4129:3,4,6,7,9,16critically 274:14137:18,19 140:21correct 65:2 101:21250:16,22 279:20130:6,14,17critically 274:14137:18,19 140:20102:4 104:15304:6133:15 139:19CRO 294:6193:20 253:1106:16,21 107:6course 7:16 85:19162:13 164:5,7crucial 15:7263:10,12 287:10109:4,15 110:2107:3 198:4 242:6171:3 174:13crystalline 85:2287:15 288:3128:18 130:22255:4 299:3,7183:2 212:6,8CSER 155:5,17301:10,13 304:16131:5 143:22cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14152:21 164:14cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14152:21 164:14cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14162:12 107:1 <td< td=""><td>8</td><td></td><td></td><td></td><td></td></td<>	8				
contract 24:21coordinated 37:11country 177:6100:4,9 102:19175:4 214:2 224:3213:15 235:20,21copy 25:5 307:14couple 79:8,19103:15 105:15249:14,15,22240:17 255:3core 259:21190:6 193:11114:22 11:14:20,21250:5,7,10 253:22256:13 263:12core c59:21190:6 193:11114:22 11:51:3,16254:5,10 255:14contractor 20:4cornerstone 22:20202:3 206:6116:17 127:7255:21 256:8,9,1233:14 44:4 58:1928:11210:15 221:18128:20,21,22256:1459:10 75:4 109:22Corporation 19:17229:4 234:4129:3,4,6,7,9,16critically 274:14137:18,19 140:21correct 65:2 101:21250:16,22 279:20130:6,14,17critically 274:14188:17 190:20102:4 104:15304:6133:15 139:19CRO 294:6254:14,22 256:20107:15 108:1,8course 7:16 85:19162:13 164:5,7crucial 15:7263:10,12 287:10109:4,15 110:2107:3 198:4 242:6171:3 174:13crystalline 85:2275:15 288:3128:18 130:22255:4 299:3,7183:2 212:6,8CSER 155:5,17301:10,13 304:16131:5 143:22coure 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14165:14 166:996:22239:22 245:19,22257:11,18contractors 37:14165:14 166:996:22239:22 245:19,22257:11,18contracts 294:8201:7 219:14covering 96:19265:3 272:8303:18contractors 37:14165:14 166:996:22239:22 245:19,22257			-		
213:15 235:20,21 240:17 255:3copy 25:5 307:14 copying 5:17couple 79:8,19 166:11 189:17103:15 105:15 112:1 114:20,21 12:1 114:20,21 250:5,7,10 253:22 250:5,7,10 253:22 250:5,7,10 253:22 250:5,7,10 253:22 250:5,7,10 253:22 250:5,7,10 253:22 250:5,7,10 253:22 250:5,7,10 253:22 250:5,7,10 253:24 250:5,7,10 253:24 250:16,22 279:20 250:16,22 279:20 130:6,14,17 253:15 139:19 CRO 294:6 critically 274:14 critically 274:14 <br< td=""><td></td><td>8</td><td></td><td></td><td>,</td></br<>		8			,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Č –	,	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	1.			
$\begin{array}{c} {\rm contractor}\ 20:4\\ 33:14\ 44:4\ 58:19\\ 59:10\ 75:4\ 109:22\\ {\rm Corporation}\ 19:17\\ 29:4\ 234:4\\ 129:3,4,6,7,9,16\\ 128:20,21,22\\ 256:14\\ 129:3,4,6,7,9,16\\ 129:3,4,6,7,9,16\\ 139:20\ 235:1\\ 106:16,21\ 107:6\\ 102:4\ 104:15\\ 304:6\\ 133:15\ 139:19\\ 102:4\ 104:15\\ 304:6\\ 133:15\ 139:19\\ 102:4\ 104:15\\ 304:6\\ 133:15\ 139:19\\ 102:4\ 104:15\\ 106:16,21\ 107:6\\ {\rm coupled}\ 65:21\\ 153:8,10,16\ 154:6\\ {\rm crucial}\ 15.7\\ {\rm court}\ 213:22\ 226:21\\ 156:15\ 15.71\\ {\rm court}\ 213:22\ 226:21\\ 156:15\ 253:4\ 29.7\\ {\rm court}\ 213:22\ 226:21\\ 156:15\ 253:4\ 253:25,16\ 254:7\\ {\rm court}\ 234:19\ 238:8\\ 253:25,16\ 254:7\\ {\rm court}\ 237:14\\ {\rm court}\ 213:22\ 245:19,22\\ 257:11,18\\ {\rm court}\ 20:5,7\ 274:12\ 283:22\\ {\rm cumbersomeness}\ 265:11\\ {\rm culture}\ 300:5,7\\ {\rm court}\ 274:12\ 283:22\\ {\rm cumbersomeness}\ 267:4\\ {\rm curves}\ 94:17\\ {\rm curves}\ 94:17\\ {\rm curves}\ 94:17\\ {\rm curves}\ 94:16\ 122:12\\ {\rm 281:19,20\ 285:22\\ {\rm created}\ 11:21\\ {\rm 132:19\ 239:9}\ 54:20\ 76:9\ 82:7\\ {\rm curves}\ 18:4\\ {\rm curves}\ 245:2\ 245:2\ 3266:19\\ {\rm curves}\ 245:2\ 245:2\ 3266:19\\ {\rm curves}\ 245:2\ 245:2\ 3266:19\\ {\rm curves}\ 245:2\ 245:2\ 326:10\\ {\rm curves}\ 245:2\ 245:2\ 326$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				· · · · · · · · · · · · · · · · · · ·	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
137:18,19 140:21correct 65:2 101:21250:16,22 279:20130:6,14,17criticize 253:4188:17 190:20102:4 104:15304:6133:15 139:19CRO 294:6193:20 253:1106:16,21 107:6coupled 65:21153:8,10,16 154:6crosses 285:16254:14,22 256:20107:15 108:1,8course 7:16 85:19162:13 164:5,7crucial 15:7263:10,12 287:10109:4,15 110:2107:3 198:4 242:6171:3 174:13crystalline 85:2287:15 288:3128:18 130:22255:4 299:3,7183:2 212:6,8CSER 155:5,17301:10,13 304:16131:5 143:22court 291:2213:22 226:21156:6 157:5,8305:1152:21 164:14cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14165:14 166:996:22239:22 245:19,22257:11,1864:17 75:6 96:8171:21 174:7covered 113:4247:16,21 248:9CSSG 256:11251:18 294:15179:1,2,14 180:22144:5249:4 260:15culture 300:5,7contracts 294:8201:7 219:14covering 96:19265:3 272:8303:18control 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6criterion 81:6curies 268:1016:212 165:1corrected 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19corrections 81:15created 11:21132:19 239:954:20 76:9 82:7175:9,10,16<	33:14 44:4 58:19		210:15 221:18	128:20,21,22	
188:17 190:20102:4 104:15304:6133:15 139:19CRO 294:6193:20 253:1106:16,21 107:6coupled 65:21153:8,10,16 154:6crosses 285:16254:14,22 256:20107:15 108:1,8course 7:16 85:19162:13 164:5,7crucial 15:7263:10,12 287:10109:4,15 110:2107:3 198:4 242:6171:3 174:13crystalline 85:2287:15 288:3128:18 130:22255:4 299:3,7183:2 212:6,8CSER 155:5,17301:10,13 304:16131:5 143:22court 291:2213:22 226:21156:6 157:5,8305:1152:21 164:14cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14165:14 166:996:22239:22 245:19,22257:11,1864:17 75:6 96:8171:21 174:7covered 113:4247:16,21 248:9255: 257.4251:18 294:15179:1,2,14 180:22144:5249:4 260:15culture 300:5,7contract s294:8201:7 219:14covers 94:17274:12 283:22267:4cotorel 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22267:4i66:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6criterion 81:6current 12:15 19:2168:19 172:19corrections 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19corrections 81:15careated 11:21132:19 239:954:20 76:9 82:7175:9,10,16corrections 81:15careated 11:21132:19 239:954:20 76:9 82:7245:2 253:18	59:10 75:4 109:22		229:4 234:4	129:3,4,6,7,9,16	critically 274:14
193:20 253:1106:16,21 107:6coupled 65:21153:8,10,16 154:6crosses 285:16254:14,22 256:20107:15 108:1,8course 7:16 85:19162:13 164:5,7crucial 15:7263:10,12 287:10109:4,15 110:2107:3 198:4 242:6171:3 174:13crystalline 85:2287:15 288:3128:18 130:22255:4 299:3,7183:2 212:6,8CSER 155:5,17301:10,13 304:16131:5 143:22court 291:2213:22 226:21156:6 157:5,8305:1152:21 164:14cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14165:14 166:996:22239:22 245:19,22257:11,1864:17 75:6 96:8171:21 174:7covered 113:4247:16,21 248:9CSSG 256:11251:18 294:15179:1,2,14 180:22144:5249:4 260:15culture 300:5,7contracts 294:8201:7 219:14covering 96:19265:3 272:8303:18control 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22267:4166:5,10 69:12268:3 280:6138:4289:17curbersomeness17:8 37:1,2,15245:2,3 266:9colcated 91:18286:5 288:20267:494:16 122:12281:19,20 285:22create 100:6criterion 81:6curies 18:4162:12 165:1corrected 81:15recated 11:21132:19 239:954:20 76:9 82:7175:9,10,16correctly 96:10237:8 285:20245:8 246:19134:2,3,14 155:16210:13 245:13correlate 45:9creating 140:1critical 9:17 10:13156:6 157:5 163:6246:2 253:	137:18,19 140:21	correct 65:2 101:21		130:6,14,17	criticize 253:4
254:14,22 256:20107:15 108:1,8course 7:16 85:19162:13 164:5,7crucial 15:7263:10,12 287:10109:4,15 110:2107:3 198:4 242:6171:3 174:13crystalline 85:2287:15 288:3128:18 130:22255:4 299:3,7183:2 212:6,8CSER 155:5,17301:10,13 304:16131:5 143:22court 291:2213:22 226:21156:6 157:5,8305:1152:21 164:14cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14165:14 166:996:22239:22 245:19,22257:11,1864:17 75:6 96:8171:21 174:7covered 113:4247:16,21 248:9CSSG 256:11251:18 294:15179:1,2,14 180:22144:5249:4 260:15culture 300:5,7contracts 294:8201:7 219:14covering 96:19265:3 272:8303:18control 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22culture 300:5,717:8 37:1,2,15245:2,3 266:9colcated 91:18286:5 288:20267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6criterion 81:6curies 18:4162:12 165:1corrected 81:15192:20103:18 126:4,6curies 18:4163:9,10,16corrected 81:15created 11:21132:19 239:954:20,76:9 82:7175:9,10,16correctly 96:10237:8 285:20245:8 246:19134:2,3,14 155:16210:13 245:13correlate 45:9creating 140:1critical 9:17 10:13156:6 157:5 163:6246:2 253:18<					
263:10,12 287:10109:4,15 110:2107:3 198:4 242:6171:3 174:13crystalline 85:2287:15 288:3128:18 130:22255:4 299:3,7183:2 212:6,8CSER 155:5,17301:10,13 304:16131:5 143:22court 291:2213:22 226:21156:6 157:5,8305:1152:21 164:14cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14165:14 166:996:22239:22 245:19,22257:11,1864:17 75:6 96:8171:21 174:7covered 113:4247:16,21 248:9CSSG 256:11251:18 294:15179:1,2,14 180:22144:5249:4 260:15culture 300:5,7contracts 294:8201:7 219:14covering 96:19265:3 272:8303:18control 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6criterion 81:6curious 268:10162:12 165:1correctid 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19corrections 81:15created 11:21132:19 239:954:20 76:9 82:7175:9,10,16correlate 45:9237:8 285:20245:8 246:19134:2,3,14 155:16246:2 253:1852:14 186:2285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2	193:20 253:1	106:16,21 107:6		153:8,10,16 154:6	crosses 285:16
287:15 288:3 301:10,13 304:16 305:1128:18 130:22 131:5 143:22 152:21 164:14255:4 299:3,7 court 291:2 court 291:2 court 291:2 court 291:2 234:19 238:8 239:22 245:19,22 239:22 245:19,22 239:22 245:19,22 257:11,18CSER 155:5,17 156:6 157:5,8 253:2,5,16 254:7 257:11,18contractors 37:14 64:17 75:6 96:8 251:18 294:15165:14 166:9 171:21 174:7 179:1,2,14 180:2296:22 144:5 covered 113:4 247:16,21 248:9 245:3 272:8 245:3 272:8 265:3 272:8 303:18CSSG 256:11 culture 300:5,7 303:18control 11:21 17:4 control 11:21 17:4 243:9 244:21,22 66:5,10 69:12 166:5,10 69:12201:7 219:14 245:2,3 266:9 268:3 280:6 138:4 192:20274:12 283:22 286:5 288:20 267:4 curies 18:4 289:17 curies 18:4 curies 18:4 curies 18:4 curies 268:10 current 12:15 19:2 168:19 172:19 162:12 165:1 162:12 165:1 162:12 165:1 corrected 81:15 corrected 81:15 corrected 81:15 corrections 81:15 corrections 81:15 corrections 81:15 corrections 81:15 corrections 81:15 corrected 11:21 corrections 81:15 corrections 81:16 corrections 81:16 corrections 81:17 corrections 81:18 correlate 45:9 corrections 81:18 correlate 45:9 correction 294:11183:2 192:92 correction 924:11 correction 924:11 correction 924:11CSER	254:14,22 256:20	-	course 7:16 85:19	162:13 164:5,7	
301:10,13 304:16 305:1131:5 143:22 152:21 164:14 165:14 166:9court 291:2 cover 61:2 67:10 96:22213:22 226:21 234:19 238:8 239:22 245:19,22 257:11,18156:6 157:5,8 253:2,5,16 254:7 257:11,18contractors 37:14 64:17 75:6 96:8 251:18 294:15165:14 166:9 179:1,2,14 180:2296:22 144:5239:22 245:19,22 247:16,21 248:9257:11,18 257:11,18contracts 294:8 control 11:21 17:4 17:8 37:1,2,15201:7 219:14 243:9 244:21,22 245:2,3 266:9covering 96:19 covers 94:17 covers 94:17249:4 260:15 265:3 272:8 265:3 272:8culture 300:5,7 303:1817:8 37:1,2,15 66:5,10 69:12 162:12 165:1 162:12 165:1 162:12 165:1 162:12 165:1 162:12 165:1 162:12 165:1 162:12 165:1 correctors 81:15 correctors 81:15 correctors 81:15 correcting 81:15 correcting 81:15 correcting 81:15 correcting 81:15 245:2 253:18 245:2 253:18 245:2 253:18 245:2 253:18 261:2,19 266:16210:13 245:13 correlate 45:9 25:14 186:2 285:18 285:18 285:18 285:18 285:18 261:2,19 266:16156:6 157:5 163:6 162:8 103:7 104:4		,			
305:1152:21 164:14cover 61:2 67:10234:19 238:8253:2,5,16 254:7contractors 37:14165:14 166:996:22239:22 245:19,22257:11,1864:17 75:6 96:8171:21 174:7covered 113:4249:4 260:15257:11,18251:18 294:15179:1,2,14 180:22144:5249:4 260:15303:18control 11:21 17:4243:9 244:21,22covering 96:19265:3 272:8303:18control 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22303:1817:8 37:1,2,15245:2,3 266:9colocated 91:18286:5 288:20267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22192:20103:18 126:4,6curious 268:10168:19 172:19corrections 81:15192:20103:18 126:4,6134:2,3,14 155:16175:9,10,16correctly 96:10237:8 285:20245:8 246:19134:2,3,14 155:16210:13 245:13correlate 45:9285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2			· ·		-
contractors 37:14165:14 166:996:22239:22 245:19,22257:11,1864:17 75:6 96:8171:21 174:7covered 113:4247:16,21 248:9CSSG 256:11251:18 294:15179:1,2,14 180:22144:5249:4 260:15culture 300:5,7contracts 294:8201:7 219:14covering 96:19265:3 272:8303:18control 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22267:417:8 37:1,2,15245:2,3 266:9co-located 91:18286:5 288:20267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6criterion 81:6curious 268:10162:12 165:1corrected 81:15192:20103:18 126:4,6curious 268:10168:19 172:19corrections 81:15created 11:21132:19 239:954:20 76:9 82:7175:9,10,16correctly 96:10237:8 285:20245:8 246:19134:2,3,14 155:16210:13 245:13correlate 45:9creating 140:1critical 9:17 10:13156:6 157:5 163:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2	,				156:6 157:5,8
64:17 75:6 96:8 251:18 294:15171:21 174:7 179:1,2,14 180:22covered 113:4 144:5247:16,21 248:9 249:4 260:15CSSG 256:11 culture 300:5,7contracts 294:8 control 11:21 17:4201:7 219:14 243:9 244:21,22covering 96:19 covers 94:17265:3 272:8 265:3 272:8303:18 culture 300:5,717:8 37:1,2,15 66:5,10 69:12245:2,3 266:9 268:3 280:6co-located 91:18 138:4286:5 288:20 289:17267:4 curies 18:494:16 122:12 162:12 165:1 168:19 172:19281:19,20 285:22 corrections 81:15create 100:6 192:20criterion 81:6 103:18 126:4,6curious 268:10 current 12:15 19:2175:9,10,16 210:13 245:13 246:2 253:18correlate 45:9 52:14 186:2creating 140:1 285:18critical 9:17 10:13 37:3 68:11 81:7156:6 157:5 163:6 163:9,10 168:6	305:1	152:21 164:14			
251:18 294:15179:1,2,14 180:22144:5249:4 260:15culture 300:5,7contracts 294:8201:7 219:14covering 96:19265:3 272:8303:18control 11:21 17:4243:9 244:21,22covers 94:17245:2,3 266:9265:5 288:20267:417:8 37:1,2,15245:2,3 266:9co-located 91:18286:5 288:20267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6103:18 126:4,6curious 268:10162:12 165:1corrected 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19corrections 81:15created 11:21132:19 239:954:20 76:9 82:7175:9,10,16correlate 45:9237:8 285:20245:8 246:19134:2,3,14 155:16246:2 253:1852:14 186:2285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2				· · · ·	,
contracts 294:8201:7 219:14covering 96:19265:3 272:8303:18control 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22cumbersomeness17:8 37:1,2,15245:2,3 266:9co-located 91:18286:5 288:20267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6103:18 126:4,6curious 268:10162:12 165:1corrected 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19correctly 96:10237:8 285:20245:8 246:1954:20 76:9 82:7175:9,10,16correctly 96:10237:8 285:20245:8 246:19134:2,3,14 155:16210:13 245:1352:14 186:2285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2				•	
control 11:21 17:4243:9 244:21,22covers 94:17274:12 283:22cumbersomeness17:8 37:1,2,15245:2,3 266:9245:2,3 266:9286:5 288:20267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6103:18 126:4,6curious 268:10162:12 165:1corrected 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19corrections 81:15created 11:21132:19 239:954:20 76:9 82:7175:9,10,16correlate 45:9creating 140:1critical 9:17 10:13156:6 157:5 163:6246:2 253:1852:14 186:2285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2		, ,			
17:8 37:1,2,15245:2,3 266:9co-located 91:18286:5 288:20267:466:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6103:18 126:4,6curious 268:10162:12 165:1corrected 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19correctly 96:10237:8 285:20245:8 246:1954:20 76:9 82:7175:9,10,16correlate 45:9creating 140:1critical 9:17 10:13156:6 157:5 163:6246:2 253:1852:14 186:2285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2			e		
66:5,10 69:12268:3 280:6138:4289:17curies 18:494:16 122:12281:19,20 285:22create 100:6criterion 81:6curious 268:10162:12 165:1corrected 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19correctly 96:10237:8 285:20245:8 246:1954:20 76:9 82:7175:9,10,16correlate 45:9creating 140:1critical 9:17 10:13156:6 157:5 163:6246:2 253:1852:14 186:2285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2		-			
94:16 122:12281:19,20 285:22create 100:6criterion 81:6curious 268:10162:12 165:1corrected 81:15192:20103:18 126:4,6current 12:15 19:2168:19 172:19corrections 81:15created 11:21132:19 239:954:20 76:9 82:7175:9,10,16correctly 96:10237:8 285:20245:8 246:19134:2,3,14 155:16210:13 245:13correlate 45:9creating 140:1critical 9:17 10:13156:6 157:5 163:6246:2 253:1852:14 186:2285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2		,			
162:12 165:1 168:19 172:19corrected 81:15 corrections 81:15192:20 created 11:21103:18 126:4,6 132:19 239:9current 12:15 19:2 54:20 76:9 82:7175:9,10,16 210:13 245:13correctly 96:10 correlate 45:9237:8 285:20 creating 140:1245:8 246:19 critical 9:17 10:13134:2,3,14 155:16 156:6 157:5 163:6246:2 253:18 261:2,19 266:1652:14 186:2 correlates 236:13285:18 creation 294:1137:3 68:11 81:7 102:8 103:7 104:4163:9,10 168:6 174:14 180:2	,				
168:19 172:19 175:9,10,16corrections 81:15 correctly 96:10created 11:21 237:8 285:20132:19 239:9 245:8 246:1954:20 76:9 82:7 134:2,3,14 155:16210:13 245:13 246:2 253:18correlate 45:9 52:14 186:2creating 140:1 285:18critical 9:17 10:13 37:3 68:11 81:7156:6 157:5 163:6 163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2					
175:9,10,16 210:13 245:13 246:2 253:18correctly 96:10 correlate 45:9 52:14 186:2237:8 285:20 creating 140:1 285:18245:8 246:19 critical 9:17 10:13 37:3 68:11 81:7134:2,3,14 155:16 156:6 157:5 163:6 163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2				,	
210:13 245:13 246:2 253:18correlate 45:9 52:14 186:2creating 140:1 285:18critical 9:17 10:13 37:3 68:11 81:7156:6 157:5 163:6 163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2					
246:2 253:1852:14 186:2285:1837:3 68:11 81:7163:9,10 168:6261:2,19 266:16correlates 236:13creation 294:11102:8 103:7 104:4174:14 180:2	175:9,10,16	e e			
261:2,19 266:16 correlates 236:13 creation 294:11 102:8 103:7 104:4 174:14 180:2			0		156:6 157:5 163:6
					163:9,10 168:6
267:8 correlating 51:16 credible 57:17 165:22 170:7 242:1 257:10	261:2,19 266:16				
	267:8	correlating 51:16	credible 57:17	165:22 170:7	242:1 257:10

	1	1	1	l
279:21 281:16	165:22 199:22	decreases 129:11	delays 306:13	142:17 190:20
currently 35:5,18	211:9 257:14	129:13	delineated 282:12	193:19,22 215:6
36:6,18 55:11	265:13 280:19	decree 291:2	deliver 17:13 29:9	215:10,13 225:18
82:2 129:6 153:14	281:17 301:6	deem 103:13	delivered 20:1 32:4	254:20 256:11
156:18 157:21	306:10	257:17	37:5	260:4 263:4,13
183:1 208:9	dated 134:4	deemed 7:11	deliveries 226:22	280:17 290:6,19
226:11 233:3	dates 168:11	deep 299:6	delivering 22:8	290:21 292:20
234:22 237:12	280:18	deeply 14:16	23:19 25:17	293:9 294:4
240:5 243:5 244:4	David 1:22,24 2:12	defects 300:9	delivery 35:4,16	295:20 296:21
247:19 248:14	59:7,19	defense 1:3 4:5,21	36:19 37:11	297:17 301:18
260:2 295:1	day 69:14	8:10 213:8 251:14	235:18 236:8	304:10
currents 144:19	days 5:14 16:3 29:6	defer 206:9 211:7	237:4	departmental
curve 101:6	29:19 265:1	229:20 235:10	demands 17:12	23:21
cushion 280:13	DBE 116:4	257:13	demonstrate 52:10	department's
cycle 25:2 83:16	de 129:4,5	deference 92:19	55:19 57:4 165:5	18:18 19:1,8,13
92:7 131:16	dead 145:13	deferred 230:1	171:9 173:1,9,18	19:17,21 22:7,20
148:10 184:12,17	deal 77:7 88:6,7	259:22 271:6	177:4 197:6	27:3 33:11,14
205:11 221:16	89:9,19 91:2 98:1	deficiencies 109:2	demonstrated 36:4	depending 120:16
275:13	101:18 160:9	define 47:11 58:1	45:14 121:15	281:3
cycles 183:11	231:16 257:19	85:19 172:2 199:7	128:10	depends 122:11
cyclic 157:20	259:9 267:4	247:17	demonstrating	195:13,15 291:9
cycling 67:19	268:11 269:16,19	defined 14:12 51:1	51:21	depth 121:3
C-O-N-T-E-N-T-S	269:20	139:17 221:14,15	demonstration	deputy 20:14 21:8
3:1	dealing 17:5 57:18	222:22 251:21	158:10	26:1 29:7 70:4,20
	111:7 114:7	259:1 287:7	denied 305:18	177:6 216:3
D	119:12 163:20	defines 8:6	dense 159:6	derive 79:4 118:22
Dahl 3:14 290:15	231:8 268:8	defining 30:3 47:10	denser 217:3	derived 53:16
290:16,18 293:17	274:18 299:2	221:3	densities 47:7,9	112:9
Dale 1:25 20:16	dealt 237:16	definitely 77:8	57:3 199:8	describe 40:16
27:19 59:4 142:13	245:16 251:15	167:11 227:9	density 36:21 45:20	70:14 71:17 110:7
166:9 287:12	decade 209:12	282:10,18	46:21 47:5,9	232:10 277:3
damaging 44:16	292:5	definition 54:9	152:9 172:5	285:9
Daniel 20:15	decades 11:5,19	141:8,10,11	182:22 241:11	described 205:5
data 7:8 35:22 36:9	16:21 204:21	171:15 220:18	243:18	215:3 239:13
46:2,4,6,9,12,16	Decem 71:10	287:1	deny 301:7	270:8
47:14,16 53:20	December 50:12	definitions 75:20	department 3:6,15	deserve 305:20
79:22 80:6 87:16	132:9 256:15	definitive 31:10	4:20 8:10 9:21	design 8:8,10,14
101:5 117:22	decide 142:10	221:19	12:13 13:3,8,15	13:4,12,17 14:3,8
118:19,22 121:18	decision 95:2	degree 31:12 48:16	14:1,6,8 15:8 16:2	14:9,13,20 15:6
127:22 132:4	140:13 267:22	91:17 92:9 114:18	19:12 21:9,12,13	16:19 19:5,15
133:22 137:6,11	281:22 282:5	139:1,12 164:2	22:12,19 23:6,14	22:13 23:3 24:20
141:4 153:22	301:4,9	196:7 246:10	24:15 26:10 30:11	25:14 31:10,11,19
158:5 169:18	decisions 190:11	247:12	40:13 58:19 61:16	34:10 37:16 39:3
217:18 241:18	192:19 297:2	degrees 187:6	64:9 88:1 89:16	39:6,12 40:17
data's 128:4	decommissioning	199:9	90:17 92:21 94:12	43:4,6 45:2 46:3
date 30:17 55:18	10:4	delay 9:5 40:6,8	95:2,5,9 96:8	46:19 47:12 48:6
143:8,15 163:12	decreased 201:5	301:7	137:16,20 140:21	48:8,9 49:9 50:22
L				•

	I	I	1	
52:4,6,15 54:9,15	desires 88:4	device 169:15	184:1 199:3,8,8,9	41:15
54:21 55:16 56:4	detail 29:21 96:7	185:22	199:9 275:2,8	discipline 25:8
56:7 57:9,13,14	270:13	diameter 146:21	276:12,20 277:3	disciplined 191:6
58:2,6 65:21 66:1	detailed 36:4 176:3	151:11,12,17	288:14	215:16
68:14 69:9,10,17	206:10 211:9	218:14	difficult 159:8	discourages 304:1
72:4 75:19 76:4	220:13 291:13	diameters 107:19	185:19 192:6	discovery 258:1
76:10 78:10 85:16	292:14	Dickey 1:24 59:7,7	223:15	259:14
92:10 93:15 94:20	details 31:14,15	70:13 71:12,14,20	difficulty 43:3 69:8	discriminated
94:22 95:3,4 98:4	176:9 294:17	72:17,21 76:17,21	difficult-to-suspe	300:2
103:18 104:8	detect 194:16	77:17 78:12 82:5	84:9	discus 45:14
106:22 116:4	determinate	82:13 113:16	diligently 22:2	discuss 21:5 40:13
119:11 120:3,6	117:21	114:1,6 115:20	dilute 91:15 232:16	93:20
121:17 138:7	determinations	116:20 117:2,7,16	232:18 233:7,22	discussed 16:7
142:2 152:21	138:7 177:12,13	123:8 126:8,10	235:6,9 248:12	79:11 134:3
153:12,19 154:1,6	determine 24:17	127:15 129:10	diluting 187:19	156:12 166:17
154:7 165:19	92:2 96:14 105:3	137:10 144:18,18	dilution 56:11	252:22 254:20
179:3,7 180:3,16	113:21 140:3	145:1,4,11,17	57:10 91:6 98:9	262:18 272:16
181:1,6 194:19,22	161:10 204:8	146:14 147:7,21	180:5 194:21	303:14
195:17 203:3,18	206:17 207:2,7	148:3,16,19 149:3	237:7	discussing 99:6
205:10 224:2	239:6 243:14	149:8,11,16 150:3	dioxide 258:2	265:2
225:15,17 229:15	246:12 278:17	150:13,16,20	direct 25:22 193:1	discussion 3:7,12
232:3 238:8 265:8	determined 33:4	151:6,10,21 152:5	250:16	18:21 68:21 111:2
265:12 267:19	35:16 36:7 56:20	152:17 158:20	directed 23:21 61:5	119:7 189:11
273:9,10,12 291:4	112:7 118:3	159:1,15,20 160:2	182:3 195:12	207:22 225:10
295:16 296:19	137:13 208:10	176:10,11 183:3,4	direction 115:14	227:5 261:16,16
297:2 300:16	241:16,18	183:17 184:8	199:15 280:22	261:20 262:12
301:2,5 304:10,11	determining 96:3	185:8,11,17 188:2	directly 18:22 53:5	267:20
304:15 305:7,10	113:13,15	189:1 193:4,5	156:8 186:4 232:3	discussions 16:16
designated 93:14	develop 48:14,18	198:7,14 200:4,7	236:15 296:8	20:2 24:5 38:11
designation 294:4	66:10 161:14	201:3,8 204:10	director 1:19 3:19	65:14 68:10 78:21
designations 294:3	248:20 263:19	207:15 216:16,21	4:17 20:17 23:20	164:10 168:12
designed 11:18	developed 47:17	217:8,12,20 218:5	24:10 25:10,11,20	222:10 247:9
40:21 92:6 102:12	79:19 99:20 100:4	218:21 222:12,14	27:18 28:3,9,16	260:18 266:22
104:13 151:16	188:21 251:18	227:19	29:5,13 37:22	271:11
157:22 196:7	260:5 275:3	diesel 181:5	59:5 60:4 62:4	dished 146:17
290:1	288:18 289:3	difference 125:1	70:5 93:9 134:1	dismissing 228:3
designing 234:13	developing 29:11	135:10 157:12	135:7 137:19	dispassionate
270:21 273:21	29:15 36:5 43:3	differences 65:13	225:19 267:17	89:15
306:4	160:13 211:12	66:9 77:9 125:6	292:2 298:16	disperse 200:3
designs 43:3 56:19	286:2,10 289:7,10	different 49:17	director's 279:11	disposal 12:12 18:5
78:4 80:19 82:2,3	development 37:18	52:20 63:21 73:1	disagree 87:11 89:3	268:4 299:5
105:4 108:12	39:13 188:18	77:2 79:9 83:2	89:8 164:15 229:6	disposed 213:2
135:14 142:1	242:18 269:13	102:2 111:4,14,16	disagreement	disposing 213:5
153:1 168:9	281:4 282:20	111:19 114:8	225:5	dispositioned 30:19
design/construct	283:2,2 284:9	116:8,9,11 119:5	discharged 43:12	disproportionately
21:18 25:12	293:21 294:1,13	120:2 121:22	discharges 250:17	122:21
desire 203:14	deviates 52:5	152:14 174:18	discharging 41:12	disrupt 119:9

Page	31	8
		_

120:10	151:11 160:15	123:8 125:16,18	dragging 150:6	259:15 261:6
dissimilar 68:14	165:15,16 206:16	126:3,8,10 127:15	draw 41:9 130:10	287:14 290:9
distribution 45:20	209:22 210:1	129:9 132:6	148:6 184:11	early 48:5 122:21
46:22 88:14,16	211:19 221:10	136:15 137:10,10	186:6	137:8 143:9
98:7 121:2 129:17	226:7 231:7,11	139:7,10 140:8	drawing 152:8,12	206:17 210:12
129:18,22 182:22	238:5 261:7,15	141:7,11,14 144:3	drawn 59:22	211:19 264:10
249:2 250:14	dollars 301:11	144:9,12,18 145:1	148:12 184:5,16	earned 301:10
257:7	Donna 1:23 60:12	145:4,11,17	drilling 259:21	earnest 12:21
distributions 225:9	171:17	146:14 147:7,21	drives 64:7	284:7
DNFSB 251:13	Double 237:2	148:3,16,19 149:3	driving 268:21	easily 152:3
291:10 304:19	double-shell	149:8,11,16 150:3	drove 123:20	east 272:14 273:3
doable 143:8	233:15,17 235:15	150:13,16,20	dry 73:3	273:11
document 37:1,2	236:6 271:20	151:6,10,13,21	DSA 250:19 255:12	easy 232:15 293:18
62:14 63:3 245:13	doubt 171:19	152:5,17 154:22	257:21 266:7,13	Eccleston 151:14
246:2 265:14,18	dovetail 225:17	155:12 157:17	266:17 267:3,5	ecology 3:15
265:22,22 285:10	downline 68:11	158:19,20 159:1	DST 257:16,16	290:19,21 292:2
289:13	downstream	159:15,18,20,21	DST 237:10,10 DSTs 237:1	292:20 293:9
documentation	119:20 122:9,21	160:1,2,2 171:13	due 36:20 44:9 45:4	296:21
64:10	293:6	175:18,21 176:10	46:22 120:6	economic 293:22
documented 194:5	DQO 241:18 244:6	176:11,17,18	157:19 221:13	294:12
250:19 256:19	244:10 246:8,13	182:16,17 183:3,4	237:18 302:2	economy 298:1
documents 192:4	263:20 285:4	182:10,17 185:5,4	305:18	edge 136:4 138:21
259:4	Dr 4:12 20:13 21:1	185:8,11,17 186:9	duration 25:3	139:1
DOE 15:8,17 16:14	21:2 27:20 39:1	186:12,14 188:2	39:21	edges 207:15,16
24:12 37:14 50:18	59:1,1,7,7,13,13	188:14,15 189:1	duty 28:20 37:22	edification 68:12
56:3,7,17 57:16	59:16,19 61:13	189:20,22 190:3,5	DWPF 213:7,9	eductor 234:14
60:1 64:16 67:9	62:11,14,15 63:9	191:15,20 192:16	264:11,20 265:1	effect 8:4 82:17
70:19 75:3,7	63:12 70:12,13,13	193:4,5,16,17	278:15	83:14 84:5,12
97:21 215:2	70:17,17 71:12,14	195:10 198:1,7,14	Dwyer 1:19 4:17	110:14,15 149:22
263:10 268:3	71:20 72:17,21	200:4,7 201:3,8	141:16 142:9	208:5 218:8 225:2
294:15 295:16	73:10,13 74:9,13	202:21 204:10	143:12 144:1	effective 29:15
301:21 302:15,18	74:19 75:1,14	202:21 201:10	dynamic 250:1	45:16 84:14 112:4
305:5	76:17,21 77:17	208:18 214:21	Dynamics 153:17	215:21 299:1
DOE's 20:17,19	78:12,14,17 82:5	215:5 216:8,15,21	D.C 5:19	effectively 11:5
31:7 53:8 71:8	82:13 93:5 96:18	217:8,12,20 218:5		18:1 19:6 159:5
228:9 297:17	97:2 99:11,15	218:13,21 222:8	Ε	209:9 283:4 301:2
303:16	100:3,15,21	222:12,12,14,15	e 1:17 64:4	306:7
DOE-EM 1:25	101:11,21 102:4,9	223:3 227:19,19	earlier 45:2 47:17	effectiveness
DOE-ORP 1:22,23	103:9 104:6,22	227:19 232:7	75:16 80:2 83:3	300:12
1:25	105:12 106:16,21	254:3,11,13,13	88:15 91:7 153:20	effects 111:5
DOE-sponsored	107:6,15 108:1,8	262:22 277:18	156:12 157:7	119:13 172:20,21
59:20	108:18 109:4	279:19 280:4,14	166:6 167:6	efficiency 49:5
doing 68:18 84:11	113:16 114:1,6	281:21 282:9	170:16 173:17	162:20
85:10 103:12	115:20 116:14,18	283:15 290:2	178:21 183:20	efficient 11:10
109:13 110:5	116:20 117:2,7,16	302:22	189:9 205:22	29:15 298:12
112:21 116:5	117:20 118:19	draft 220:15 221:6	219:16 241:1	efficiently 18:2
124:1 148:14	119:2,17 120:1	265:18	247:2,10 257:5,9	29:2 38:5 39:20
	,			
1	1	1	1	1

292:12 299:9	emptied 214:14	enhance 272:13	equivalent 116:4	evaluation 37:10
effort 9:9 12:22	empty 130:4 275:4	273:15	258:13	50:13,15 59:21
13:16 46:18 58:1	emptying 25:16	enhanced 273:2	erode 114:11 116:6	155:6 160:14,22
241:19 264:1	292:6	enormous 21:11	erosion 114:12	162:17 167:13
288:2	enabling 8:3	26:7	err 175:15	168:1 169:20
efforts 22:21 26:21	encourage 262:4	ensure 8:15 9:1	erroneous 87:12	174:6 219:18
27:3,6,12 34:22	encouraged 183:21	26:11 28:21 34:1	93:4	249:22 250:6
35:17 96:7 127:20	encouraging	37:5,12,15 38:1	error 268:3	255:14,21 268:19
244:20 282:20	185:10,12	77:21 89:17 94:11	essence 137:13	evaluations 85:12
283:6 287:17,17	endeavor 18:22	132:22 189:2	285:19	101:19
EFRT 49:1 71:3	ended 84:5	194:20 196:20	essential 22:13	evening 307:17
82:16 93:16 95:13	ends 58:8 109:22	240:2,2 274:8	158:12 284:6	event 54:15 76:4
193:8 202:1	126:17 218:8	ensuring 34:4 39:5	291:20 292:3	116:4 119:11
245:10	energized 38:7	98:18 140:2	293:7	120:3,6 135:21
eight 39:9	energy 3:6 7:19 8:5	190:21 257:20	essentially 62:16	231:17
either 16:11 92:18	8:10 9:5,17 10:7	enter 67:14 69:13	81:8 104:14	events 201:20
142:16 157:1	15:8 20:12,14	101:16	105:16 108:21	eventual 10:4
161:21 170:18	21:9,12 22:18	entered 61:9	160:1 232:21	12:12 18:5 287:15
196:2 237:13	25:21 28:8 40:13	entire 39:21 156:10	292:5	eventually 293:8
elaborate 62:12	41:16 43:7,8	165:1 216:4 219:3	establish 46:2,18	everybody 208:1
elected 40:13	50:10 58:19 59:2	282:16	52:13 57:17 72:15	228:22
element 22:13	61:16 62:4 64:9	entitled 307:19	196:21	everybody's 240:10
136:5 181:6	88:1 92:21 94:13	entrance 6:6,15	established 24:11	everything's 218:1
220:17 221:2	95:3,5,9 96:8	envelope 17:10	46:16 48:11 51:1	evidence 191:18
274:15	135:7 137:20	58:1,4 175:1	57:11 58:5 122:16	238:4
elements 165:18	190:20 193:19,22	196:21 285:20	123:10 153:15	evidenced 145:18
224:1 225:8	215:6,10,13	286:3	271:1 300:5	evident 194:2
269:12,14	225:18 254:21	enveloped 286:6	establishing 14:9	evolution 68:7 71:8
eliminate 194:12	256:11 260:4	environment 33:19	47:21 86:21	evolved 31:11
eliminating 181:16	263:5,13 280:18	59:2 135:7 291:6	112:15 175:8	82:15 84:20
EM 240:17	282:21 294:5	301:19 303:22	274:17	evolving 204:5
embedded 219:20	295:20 301:18	environmental	establishment 48:6	224:3 235:18
220:2	_304:10	20:12 25:22 27:9	estimate 47:4	exacerbates 12:10
embraced 94:1	Energy's 4:20	32:18,20 59:14	157:11	exact 275:14
emerge 32:6	12:13	62:5 93:22 95:10	et 287:13	exactly 94:9 151:7
emerged 30:15	engaged 22:18	240:17 244:12	etcetera 230:5	200:15 275:6
224:14	23:10 75:2	282:22 298:20	evaluate 59:17	examined 258:7
emergency 180:19	engineer 302:19	299:18 300:4	89:14 97:20	example 31:7 47:1
181:5	engineered 58:4	envision 209:16	118:16 163:14	179:3,15 191:22
emphasize 187:11	270:22	EPC 95:16	194:4	258:19 276:18
190:6 202:5	engineering 49:21	equal 7:2 86:7,17	evaluated 19:11	examples 23:9
employee 301:1	60:7 72:13 81:12	114:12	36:3 78:5 108:11	206:6
302:14	101:4 135:13	equation 219:21	137:5 179:20,21	exceeding 105:14
employees 299:17	136:12 209:5,11	equipment 73:4,7	224:19	excellence 27:5
299:20 300:6,17	244:19	77:11,12,19 221:4	evaluates 220:5	excessive 44:11
301:17,21 306:15	engineers 69:1	221:12 291:5	evaluating 161:6	exchange 227:22
employment 302:6	engineer's 303:6	300:10 305:13	161:12	246:17 284:5
	l	<u> </u>		l

٦

exchanges 9:22	43:2 93:9 254:14	exposed 14:19	271:10,13,15	219:21
excuse 15:17 109:8	experiential 158:5	expressed 133:6	272:1 273:5	factors 45:8 52:9
195:2	experiment 145:19	215:15 216:2	301:14	52:13,22 79:5
execute 28:20	experimental 49:17	extend 223:11	facility 3:8 8:7,11	151:18 195:22
37:22	54:2 55:2 73:21	290:11	8:12,17,22 9:7	failed 67:10,15
execution 22:6	121:18 127:22	extending 55:22	13:21 15:4 26:12	80:10
executive 3:19 22:7	188:21	extension 173:5	35:14 39:12 40:18	failing 103:14
28:18 60:9 69:19	experiments 52:19	extensive 35:8 73:5	40:20,22 44:21,22	failure 9:4 300:10
263:7 286:22	110:1,4,5,7,8,11	202:9 268:2	45:18 47:13 58:3	301:8
298:16	111:7 112:2,22	extensively 72:14	64:14 65:7 66:14	failures 305:3
executives 24:6	113:1 114:3	extent 7:11 15:1	68:8,15 89:13	fair 161:15 162:22
exercise 7:18 125:6	116:22 117:8	36:6 70:15 71:17	125:2,3 142:8	164:3 174:6
exist 12:3 183:1	118:6 132:1,3	72:5 73:11 179:19	143:18 160:15	fairly 60:20 72:14
258:17	expert 59:8 69:10	195:14 196:9	162:6 163:4	127:6 133:11
existed 86:5	82:10 87:15 95:22	269:17	169:11 175:9	151:1,13 303:9
existence 301:19	111:11 172:3	external 13:8 30:13	204:21 205:14,20	fall 77:18 148:7
existing 35:9 36:22	206:21	30:20 31:22 32:10	206:2 207:10,11	fallen 105:17
53:20 55:16	expertise 71:7	32:10 33:2 48:20	210:11 213:8	falls 77:22 196:4
196:22 253:5	72:19,20,22 105:3	49:2 59:11 70:22	224:6,11 231:5	falsely 183:21
273:2	213:11 216:3	71:1 224:17	241:7 245:16	familiar 87:6 92:22
exists 94:8 258:18	261:8	extracted 157:3	260:14 261:3	214:5 255:18
271:12 291:15	experts 13:10	Extraction 212:22	270:21 271:9	256:5,17 257:3
exit 69:14	18:18 19:1,8,11	extrapolated	272:15 273:3,11	264:15
expect 65:18 68:14	50:17 53:9 87:6	138:22	273:15,17 274:17	far 4:16,18 85:7
184:4 207:17	89:4 95:14,20	extrapolating	287:20 288:4	133:13 144:17,21
243:9 269:10	97:10 125:10	52:20	290:22 292:14	145:21 147:22
272:11 273:9	164:12 176:22	extremely 14:21	296:2 299:7,13	148:2,11 150:7
274:22	177:2 178:14	93:8 171:1 191:4	300:16 301:3	170:1 178:11
expectation 292:10	182:3 190:16,19	215:13 254:14	303:5 305:2,3,15	188:8 198:17
expectations	191:4,12 195:3,4	255:5 263:9	306:1	210:7 211:20
230:22	216:2 220:19	296:20	facing 264:16	231:22 258:14
expected 36:19	224:14,17 225:5	eyes 27:4	fact 70:3 93:20	259:5 271:17,20
184:2 201:1	229:5,21 255:3	e-mail 62:3	100:19 109:20	306:4,12
259:15 287:2,3,4	300:15		121:21 126:13	farm 20:4 25:10
expecting 68:3	explain 7:21 15:8	F	128:19 129:2,9	34:20 44:4 46:22
expel 41:11	26:21 114:22	F 1:15 213:3	143:16 184:22	59:10 168:13
expense 80:16	explained 113:17	face 67:4 260:21	190:15 194:8	179:22 183:7,9
expensive 268:3	explaining 292:21	facets 137:20	200:2 215:7 217:2	187:8,22 199:11
experience 62:21	explicitly 155:19	facilitate 37:17	218:22 250:1,6	201:2 203:9,15
63:13 65:6 69:22	explore 16:4 82:6	294:10	296:17	205:17 206:16
72:7 78:3 156:7	87:2	facilities 1:3 4:5,21	factor 51:16 53:3,7	212:4,13 213:4,6
158:3 202:9	exponent 53:3,12	10:4 24:1,13	53:11,22 101:10	213:12 235:20,21
203:10 212:14	53:16 85:13,22	35:10,11,14 38:10	112:8 113:5 114:4	237:13 238:3,19
235:1 254:16	86:11,14,16	39:3 73:22 101:3	115:18 117:12	240:7 245:18
261:7 264:7		135:13 205:8	119:1,11 126:12	248:15 251:9,16
	115:22 116:2		117.1,11 120.12	270.13 231.9,10
277:12	115:22 116:2 exponents 53:22	210:19,22 224:9	131:4 162:21	251:18,20 252:3,4
277:12 experienced 23:16			,	,

	•	•	1	1
255:3 258:17,19	fee 301:11	file 239:13	167:4 173:10	follow 6:20 199:20
258:19 259:8	feed 3:12 35:15	filed 291:2	178:2 184:19,21	217:14 256:21
260:21 261:1,12	37:4,5,10 38:11	fill 108:2 206:20	192:8 195:16	followed 20:16
262:2,14 275:9	58:7 65:15 67:20	277:15	197:18 206:19	71:8
276:13 286:2,17	69:14 77:21 82:8	filling 263:7	208:16 212:11	following 23:13
287:3,10,21	106:5,6 122:10	filtration 106:8	221:6 232:9,17	54:4 62:2 98:11
288:18	124:3 181:17	final 14:9 75:17	241:14 251:2	303:3
farms 11:20 17:3	186:17 187:19,20	80:12 153:19	267:13 290:15	follow-up 139:6
17:13 20:20 28:3	187:20 203:14,22	154:1 160:14	294:17,21 305:9	228:19,20
28:5 34:2 35:15	213:7 222:16	162:16 164:6	firsthand 296:3	foot 151:11,12,17
35:19 36:12,14	233:1,15 235:18	167:12,14,22	fissile 18:12 44:10	218:14
37:12,21 56:2	236:2,7,10 237:3	169:19 174:5	159:7 243:14	force 146:11
78:8 162:1,19	237:9 244:8	220:15,15 297:8	fit 192:21	forced 193:12
163:2 170:20	247:10 261:3	finality 285:19	five 4:14 7:4 73:1	forcefully 44:15
183:14 186:13	264:21 272:18	finalize 171:3	148:20 151:4	forecast 196:19
188:17 197:16	273:22	285:12	224:8 236:8 237:6	foremost 138:2
226:8,14,20,22	feedback 27:2	finalized 14:14	289:22 290:10	195:16
227:6 228:12	68:22	finally 294:22	flammable 18:10	forgotten 200:15
229:14 232:11	feeding 182:15	find 81:13 123:14	44:11 52:3	form 9:19 12:11
235:13 249:16	236:14 263:16	170:17 221:11	flat 53:18	70:21 71:7 83:7
250:8,9 254:15	feedstock 67:12	223:11 250:9	flexibility 55:8	283:17
255:5 262:21	feedstream 226:22	251:5 266:15	174:22	formal 9:19 12:20
266:8,17 267:1	270:9 274:11	finding 50:9 113:4	floor 5:18 27:17	192:2 194:1
268:17 270:3,7	287:4,6	124:11 251:15,17	34:14 139:7	formality 307:2
271:19,19,21	feedstreams 269:6	258:15	flow 68:9 76:19	formed 206:15
275:1 281:10	274:6	findings 256:19	219:5 274:22	237:17 294:3
282:4,7 286:21	feel 81:20 88:9,19	302:18	flowsheet 30:21	former 267:15
farm's 36:4 271:12	142:2 196:10	fine 144:13 203:19	33:2 48:21 49:2	forming 70:16
farther 150:9	226:2 251:7,11	208:15 225:7	59:11 91:4	forms 9:9 283:20
fashion 157:21	282:6 296:5	finer 270:13	fluid 57:3 112:16	formulate 9:16
201:20 207:1,7	feels 282:21	finish 14:12 128:15	153:17	forth 136:13 164:5
297:19	feet 120:18 146:10	239:1 297:21	fluidics 129:13	192:21
fast 42:12	238:9 265:20	finished 230:10	flume 118:9	forward 14:12 38:8
faster 122:20 184:7	fellow 20:7	fired 83:22 300:1	flush 235:11	38:10 56:15 66:10
Fast-settling 42:11	felt 79:15 81:7	firing 200:16	focus 11:1 24:7	95:16 161:11
fear 300:7 302:12	91:14 100:1	firm 197:21	25:8 29:17 30:9	162:5 179:7
fearful 300:17	129:15 158:7	firms 294:8	33:7 34:13 66:4	180:16 192:19
feasibility 182:5	193:9 240:22	first 5:2 12:6,20	210:3,4 225:12	194:7 224:7
feasible 214:1	295:22 302:6	17:17 30:6 32:8	focused 34:3	230:15 255:7
feature 216:19	fence 226:13	32:21 33:20 35:19	262:13	267:1 300:6,18
federal 5:2,21 20:4	fewer 276:6	40:12 42:19 58:18	focuses 120:4	302:7
20:17 23:19 25:9	fidelity 215:17	61:12,15 62:11	focusing 15:6 25:15	found 5:10 8:4
25:10,19 27:18	figure 85:20 90:5,9	70:14 77:6 93:10	82:20 127:9 223:7	47:16 80:5 83:5
28:3,9,16 29:5,12	100:19 101:9	99:17 128:4	folks 64:16 113:6	83:21 85:4 123:18
37:21 59:5 93:9	102:10 132:20	129:19,20 138:2	123:16 131:22	132:11 200:8,14
137:19 225:19	164:22 288:9	144:15 149:3	133:16 137:9,10	200:16 259:6
267:16	figures 102:1	155:9 166:14	142:16,17 299:9	276:21 301:22
	I	l	l	l

founded 51:3	206:5 268:1	gallons 18:2 22:22	212:9 256:5	110:1,3 114:14
four 29:22 73:1	298:22	28:14 35:5 240:9	given 10:6 15:5	117:9,11,12,14
80:8 97:19 107:7	full-scale 49:19,21	28.14 55.5 240.9 291:16	43:15 63:12	122:14 124:7
108:12 219:6	51:17 52:10,17,21		170:19 215:9	122.14 124.7 125:14 126:10
221:9 226:17	55:18 110:4 113:1	game 304:22	267:17 280:11	
		game-changer 258:3		127:3,5,8 128:2
265:1 268:9,11	118:9 151:16		305:3	128:15 138:11
295:5	158:12 196:1	gaps 182:7 195:7 206:20	giving 307:13	139:6 143:17,19
FPD 29:12	202:10 205:8		glass 140:2 264:14	144:20 146:10
fraction 229:7,13 231:12	222:18 223:18	gas 17:5 18:11 52:3	277:11 278:19	147:1,4 148:7
	function 55:8 61:19	111:22 180:5,5 242:8	283:18,22 291:21 293:9	152:8 153:13,21
frame 15:10	117:15 119:17			154:17 155:1
framed 272:9	122:8 129:13	gases 44:11	glassware 151:16	161:1 162:4
framework 280:15	201:10 263:8	gathered 167:7	gliding 147:3	163:14 164:19
280:16 281:22	271:14 286:21	gathering 121:18	go 15:3 67:18 85:19	165:12 172:1,18
282:13 283:17	287:7	gear 210:14	87:4 93:11 100:17	173:9 175:1
France 297:9	functional 57:9	gee 99:4 279:12	101:15 117:19,20	177:11 178:6
Frank 2:14 60:3	91:1 92:1 138:3	gel 254:1	127:20 141:22	179:3,7,13 182:2
141:18 227:13	139:18 203:2,5,12	gels 237:17 246:16	142:6 143:3	183:11 184:7
Franklin 294:2	203:22 204:7	general 1:19 4:15	154:14,18,20	187:4 190:17
frankly 234:10	223:13	68:12 72:1 192:15	161:1 162:2 164:9	193:8 195:21
296:12	functions 119:6,8	192:16 265:10	166:13 168:9	196:18 197:4,5
freely 42:1,6	fundamental 62:7	307:14	172:11,16 173:4	203:19 204:13,14
frequent 54:22	162:3,9 174:13	generally 42:13	175:2,6 178:7,18	204:19 205:14
76:11	fundamentally	generated 17:6	183:10 203:5,18	211:14 213:21
front 187:17 262:5	40:1 55:7	generation 139:21	204:18 206:3	216:12 217:15
264:6	funding 32:5	242:9,20 254:1,1	213:18 217:18	218:18 221:10
FRP 103:4 135:18	funds 240:21	generations 27:16	230:14 231:22	223:12,17 225:7
FRT 71:21,22	287:19 FUP 135:18	geographic 271:18	238:22 239:19	228:3,6 230:16
Fuels 48:7,11		geological 299:6	246:7 250:4 263:17 270:15	232:11,12 233:20
fulfill 9:10 27:8	further 7:15 16:8	geometrically	203:17 270:15 297:12	234:18 235:4,5
272:21 304:20	36:20 48:17 49:4	149:4,6		237:13 238:20
full 22:8 24:6 25:20	51:19 56:22 99:2	geometries 250:11	goal 120:9 135:18	241:3 244:2,5
26:20 55:5 66:1	133:13 143:10	geometry 121:20	293:1	245:7 247:15,16
79:6 85:17 86:13	259:11,13 260:11	149:2 174:14	goals 15:14 99:14 242:1	249:6,21 250:1
101:7 118:10	future 12:15 16:9	getting 12:2 116:6 133:21 136:15		251:4,5 260:21
120:22 121:6	168:11 211:20		goes 136:8 173:15	261:1,5,11,14
124:10 126:15,17	235:5 249:20	139:19,21 140:3	183:5 187:2	262:2,8 263:16,22
126:18,19 132:1	287:22 291:21	144:15 156:16	188:20 253:4	264:4 265:6 275:3
134:8 136:6	298:4 302:10	171:14 183:15	261:11 297:19	277:15 278:7,10
166:18 171:5	G	185:7 189:10	going 15:9 17:18	279:6 281:10
176:6 184:20	gain 16:5 26:20	218:13 221:14 295:2	30:4 58:20 61:11	284:16 288:8 290:6 304:6
204:18 205:5,10 222:22 223:9	31:4 64:1 175:14	Gilbertson 70:21	61:13 68:11 69:12 81:22 82:6 87:2	
	gained 69:1,22			good 21:2 27:7,21
fully 14:18 22:18 26:21 42:7 89:18	202:9	give 7:1,5 30:2 69:8 92:19 93:8 110:20	90:3 91:11 96:3,6	38:20 67:17 70:9 117:13 131:18
	gallon 272:21	117:13 128:11	96:15,19 99:1	135:3 154:19
93:22 125:5 159:15 203:18	276:7	167:21 206:10	100:6,17 101:12 101:16 109:11	158:4 159:19
139.13 203.18	2,0.,	107.21 200:10	101.10 109.11	130.4 139.19
	I	l	l	

167:4 174:4127:17 137:2270:12 278:10222:21 267:14highest 21:13227:13 246:22182:2 183:4 193:5happened 83:22298:13 302:18222:19247:2,6 251:7,12198:16,21 200:20145:18303:16 307:16highlight 291282:18 22 280:1201:20 214:20happeneing 84:6hopping 17:18highlight 19:18	
247:2,6 251:7,12 198:16,21 200:20 145:18 303:16 307:16 highlight 291	
1 202.1022200.1 = 201.20214.20 = 1 hornoring $04.6 = 1$ hopping $17.10 = 1$ highlighting	
283:18,22 289:1 201:20 214:20 happening 84:6 hearings 17:18 highlighting	
295:2 219:12 241:14 110:18 126:17 27:2 highlights 30	
gotten 117:6 184:1257:2 265:16218:9heart 190:18highly 142:3	
193:1 284:11267:13 289:11happens 129:10heat 242:20high-level 11	
government 5:6 guessing 300:8 happy 58:9 298:3 heavier 184:3 17:6 19:4 3	
301:13 guides 46:11 306:22 217:4 225:8 68:8 106:5,	
governments 294:9 guys 87:3 harassed 300:1 heavy 42:14,21 124:4 236:9	
Governor 292:2 hard 163:4 217:13 heel 56:10,11 57:10 276:11 291 grade 235:17 H 221:1 57:10 91:15 98:9 299:3 5 301	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
gradient 152:14 H 1:15 harmful 11:3 130:1 173:1 293:6 high-pressur	e
Grandridge 1:11 half 126:18,19 haste 221:13 height 52:7 108:2 41:11	
graphs 105:11129:20 146:20hazard 11:6 18:14122:6 123:5,12hill 91:6 190:	10
gravitational 185:1 120:12 heightened 25:8 194:17,21	
150:18 hand 34:21,21 hazardous 14:22 31:12 hills 194:16	
gravity 69:2,3handle 197:22291:5heights 123:11history 11:13great 77:7 187:8251:12hazards 22:21heid 5:5171:2 173:1	
227:22 267:4 handled 229:8 41:17 help 13:12 68:17 194:2 247:3	
greater 50:7 hands 211:15 260:9 HDW 258:22 259:5 72:15 140:13 294:14 301	
102:17 103:12 Hanford 3:20 4:21 head 146:17 168:18 170:8 305:3 306:1	
120:5 123:16 10:17 11:15 18:3 headed 115:15 190:21 269:16,19 HLP 106:4 12	
301:22 306:12 21:20 23:1 25:2 headlights 262:5 288:5,15 135:17 179	
greatest 42:12 35:2 39:15 40:6 264:6 helped 299:20 HLP-22 146:	3
54:18 76:7 65:9 66:19 67:5 headquarters 5:18 helping 189:3 166:22	
greatly 105:14 68:4,18 213:12,16 70:20 helps 169:4 204:17 HLP-27 166:	
greatly-reduced 214:12,14 227:12 health 8:16 9:2 Henschel 137:11 HLW 236:8 2	275:11
85:15 237:15 240:11 10:8,14 12:16 heterogeneous hog 92:15	_
Greg 1:22 60:6 251:16,21 252:1,2 15:14 33:11 197:7 hogging 139:	
109:12 123:2 252:17 259:1 299:19 303:16 hiccups 173:13 hold 99:1 168	
138:17 206:9 265:6 268:4 hear 136:17 hidden 300:9 168:21 227	
229:21 279:21 280:3,21 heard 56:3 132:17 high 18:7 42:20 holding 298:	13
Gregoire 292:2 281:5 283:11 164:9 165:10,11 45:6 48:4,16 84:2 holds 21:11	
Gregory 307:6 290:22,22 294:15 166:7,17 175:19 92:9 105:18 holistic 139:3	
grinding 248:22 294:18 295:2 178:11,16 212:12 123:11 124:2 holistically 9	
ground 150:10 297:8 298:1,17,21 222:10,11,15 139:12 147:16 homogeneou	S
group 39:4 95:14 298:22 299:16 223:14 228:10 152:9 163:21 185:6	-
139:9 249:15 Hanford's 19:3 260:17 275:1 164:2 184:11 homogeneou	sly
256:10,12 286:14 27:14 28:12,14 279:8,9 296:20 187:6 100:7	• • • •
286:15 34:6 39:18 299:2 hearing 1:5 4:7 5:1 higher 53:13 66:21 homogenous	
groups 200:16 300:3 5:8,11,13 6:4 7:9 78:3 79:15 81:21 honor 303:15	
grown 67:9 Hanford-defined 7:16,18 8:2 9:8,14 84:4,8 86:19 Honorable 20	0:13
guarantee 306:6 251:19 16:8,17 20:10 91:17 94:7 98:18 20:15	
guarantees 306:12 happen 147:13 21:16 26:17,19 105:22 123:19 hook 284:11 184:12 187:17 20:650 17,19 105:22 123:19 hook 284:11	
guess 64:12,16 90:1 184:13 187:17 28:6 58:17 60:19 124:17 184:15 hope 183:20 2	
103:4 117:2 191:13 235:8 61:10 82:5 143:15 218:10 238:17 hopefully 203	3:1

٦

213:17 220:14	132:8 135:12	137:18 143:13	includes 53:3 65:9	168:15 226:1
269:12	136:11 141:4	150:19 152:20	135:15 210:22	290:9
hosted 295:20	294:21	155:15 158:8	271:12 281:18	indicating 177:9
hostile 301:19	III 94:19	171:1 177:11	286:9 287:1	indication 180:14
hot 14:20 170:1,2	illegally 299:22	180:2 181:3,13	including 10:8	307:5
223:13,22 224:5	illustrated 26:8	189:16 193:17	23:12 25:16 35:9	individuals 23:14
273:21 274:1,4,18	imagine 111:13	198:11,15 202:13	54:11 73:20 75:22	90:12 93:1 274:13
277:10	immediate 4:10,12	209:3 210:2,10	89:11,20 112:22	302:8,9 303:20
hour 148:21	143:1	216:17 223:21	142:7 235:22	industrial 52:5
hours 200:9 289:22	immediately 137:4	224:14 225:3	242:13 244:14	62:22 63:14 72:22
hundred 275:16	210:16	241:5 262:4 263:9	283:9,12 300:15	73:6 77:3 114:21
277:13	immersed 29:13	264:8 274:14	incomplete 57:13	115:4
hundreds 74:13,14	Immobilization	296:1,6,20 298:15	incorporate 155:11	industrially 115:12
275:19,20	9:11 28:10 39:11	imposed 302:15	incorporated 19:16	industries 13:11
hydration 201:16	immobilized	impression 154:5	43:1,2 134:8	151:4
hydrogen 17:4,5,8 18:11 91:3 116:8	291:21	improve 123:20 166:14 195:18	240:13 302:17 increase 43:6	industry 18:19 30:11 42:3 100:13
119:9 120:10,13	immobilizing 292:7 impact 3:9,9,10,10	262:20	129:12 179:11,16	101:13 150:22
139:20 154:4,12	13:5 37:10 55:22	improved 98:8	249:17 267:2	industrywide
H2 242:14	57:7 163:21	108:14 267:6	increased 43:9 98:7	252:18
112 242.14	300:11,18	improvement 22:5	107:18 180:6	inertia 209:7
Ι	impacted 45:1	27:5	201:5 257:15	Ines 1:25 20:13
ICD 284:22 287:9	impacts 291:22	improvements	increases 306:12	59:1 169:6 247:2
ICD-19 37:1 183:2	impacts 291.22 impart 147:9	24:22 272:2	increasing 43:10	inevitably 17:6
243:6,15 246:3	imperative 296:16	280:18 281:13	43:11 124:6	inferred 143:17
284:19 285:3,7,9	impinges 110:13	improving 53:14	178:21	influence 54:13,19
285:12 289:12	impinging 53:17	inability 120:13	incredible 162:6,15	55:4 76:2,8 81:3
Idaho 12:4	implement 17:8	inaccessible 41:5	163:5 165:5	110:12,13,20
idea 105:7 114:19	37:17 51:6 94:20	inadequate 49:15	250:10	112:16,20 116:22
128:12 229:18	268:22	106:20 107:5,9	incredibly 164:2	117:3,10 118:15
274:7 289:1	implementation	108:12,20	173:6	118:20 119:3,8,12
ideal 212:5,7	17:7 225:1	Inadvertent 44:9	indefinite 169:3,4	120:3,22 121:4,9
ideas 182:8	implemented 227:2	inch 101:2 148:4	indefinitely 141:22	145:12 147:2
identical 52:18	implementing	inches 131:14	142:6 168:9	150:11 298:20
303:13	182:7 286:12	147:19 148:2,2	independent 22:1	influenced 86:14
identified 24:18	implication 160:9	149:12 236:1,11	50:18 53:9 60:1	inform 13:12 70:1
26:15 31:2 48:22	implications 44:1	237:5 239:12	71:1 166:10	72:18
66:7 71:2 94:5,16	implicit 15:11	include 17:1 20:3	215:19	informal 9:21
183:2 224:20	importance 21:11	57:19 155:7	independently	information 7:8
231:20 236:8	important 13:15	156:14 186:17	80:15 304:16	16:7 31:20 32:11
237:2 240:12	22:3 30:9 45:21	194:15 195:2	indeterminate	89:16 104:11
242:16 257:15	48:19 50:9 54:8	197:8 198:2 228:7	305:18 306:17	121:19 134:6
289:8	75:19 93:11 95:1	248:20 255:20	indicate 55:7 57:6	137:12 167:7
identify 23:9 24:21	97:8 98:2,13	included 30:22	69:4	170:8 207:12
26:3 206:19 269:2	100:2 106:4	62:3 73:17 91:6	indicated 14:1	263:21 274:5
II 94:14 99:7	110:22 111:4	132:1 137:14	67:11 86:7 142:19	informed 15:13
109:10,13 121:14	117:4 119:4 122:4	264:2	143:2 152:2	32:20

: : : : : : : : : :	175.10		14.10.15.12.10.6	170.16 194.5
infrastructure 35:8	175:10	invaluable 227:21	14:18 15:13 19:6	179:16 184:5
39:4 281:9,12	instruments 305:13	invest 283:1	22:3 24:17 26:8	jets 53:17 110:10
ingredient 158:12	integral 96:2 191:5	invested 281:7	31:19 32:6 33:1,5	112:3,4,14,17
initial 11:17 83:5	integrate 122:2	investment 90:18	34:4 36:10,16	113:21 118:8
83:13,20 170:1	integrated 36:11	151:2 168:12,17	40:1,2,11 44:6,9	job 28:20 29:6
236:3	54:14 55:4 76:2	281:1 294:11	48:22 55:9 57:12	37:22 89:15
initially 132:8	235:17 236:7	investments 284:8	71:2 74:3,6 94:4	137:19 213:13
168:15 235:20	260:5 262:16	invite 20:11 58:18	94:15 95:13 121:6	225:18 236:4
initiated 12:19 98:5	272:17	inviting 28:1	142:14 156:11	260:22 294:10
initiating 13:7	integration 34:1	involve 11:9 284:3	157:6,7 173:20	302:1
initiation 143:14	262:14 263:4,9,14	involved 4:19	178:6 191:3,16,22	jobs 300:1
inlet 79:14 100:10	286:20	71:20 72:10	192:7 206:22	Joe 220:9
102:21 105:16	intend 16:4 70:5	121:22 126:12	224:13,22 226:16	John 1:17 4:12
146:12 149:2	278:1	132:8,10,15	226:19,21 231:9	307:6
172:21	intended 14:11	177:12 183:6	231:12 236:22	joins 96:5
inlets 79:17	61:18,19 63:11	293:10 296:8	237:12,15 244:13	Joseph 1:15 4:13
innovative 284:3	64:19 65:8	involvement 70:16	245:11,11 257:11	journal 53:4
input 19:12 21:22	intent 230:9	71:18 73:12 99:13	264:10,16 269:17	journey 66:4
67:21 182:1 232:4	intention 100:6	109:21 134:8	269:20 285:11	judgment 192:20
270:9 274:6	interact 274:13	294:14	291:13 292:17,19	July 5:3 54:3 202:6
inputs 47:12	interest 111:15	involves 18:6 40:18	293:4 298:15	302:21
137:12	157:11 294:14	involving 42:20	299:19,22 300:15	June 28:7 48:5 51:5
inquire 67:6 68:6	304:5,13	62:9 78:2	302:5,13 303:4,13	71:10 72:14
inquired 11:8	interested 6:1	in-depth 21:22	306:11	133:20 135:8
inquiring 7:22	211:11 296:8	in-plant 45:9	items 66:6 83:1	
inquiry 16:8 302:3	interesting 159:13	ion 246:17 284:5	it'll 61:12 117:17	K
inside 163:3	165:9 226:5	IRP 153:16	175:2 183:10	Kasdorf 38:20,22
insiders 300:14	interface 37:1,1	IRT 166:10	i.e 253:7	58:12 269:18
insight 66:18 67:4	245:13 246:2	issue 49:10 62:19		270:18
140:18 167:21	interim 283:21	62:19 64:13 67:12	<u> </u>	Kasdorf's 268:6
insights 65:5	internal 13:8 30:13	71:5 72:9 74:2,4	January 51:5	keep 168:10 179:12
158:22 227:21	134:20 142:1	93:16,18 94:15	Japan 297:10	198:22 223:6
inspection 173:2	143:11 168:8	95:7 97:4,8	Jennifer 307:6	224:21 238:21
190:10 194:21	internals 92:11	121:10 142:13	jeopardy 302:2	285:17
inspire 301:11	165:19 226:2	147:17 149:2	Jessie 1:15 4:10	keeping 15:12 27:4
install 165:22	Internet 5:9	153:15 156:21	jet 3:4 18:17 40:11	keeps 250:18
installation 134:16	interpreted 299:11	173:16 188:22	40:14,14 65:7,14	Kennewick 1:12
142:22 151:3	interrupt 141:17	189:15,16 194:14	65:19,20,22 66:5	kept 60:20
166:21	214:7,22	215:21 219:14	66:11 67:20 68:9	key 14:18 24:5
installed 56:21	interviewed 301:21	226:7 235:12	94:9,16 95:4	136:5 216:19
134:13 135:1	302:1	237:3,11 240:11	104:3 110:13,15	220:17 236:17
221:12	interviewees 302:4	240:12 245:17	113:5 114:4 118:9	keyed 205:12
instance 145:6	302:12	253:13 266:5	118:11 123:15	kilogram 249:19
150:18 241:11	introduce 4:9	298:14	124:16 125:3	kind 26:18 77:19
instances 67:13	58:21 126:10	issued 49:11 54:3	129:12,14 131:6	84:22 85:22 86:4
instrumentation	introduced 286:20	251:15	156:1,9,16 157:19	91:9 99:4,5 102:1
47:2 158:16	invalid 93:3	issues 11:9 14:15	158:1 179:6,8,16	110:18 128:12
L				

٦

		1		1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	148:21 158:15	knowledge 31:4	laboratory's 59:17	late 33:10 137:8	lengthy 174:1
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			8		
				LAW 276:5,6	lessons 67:17 68:20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		knows 213:3	8		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$,	,	v	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$,	•	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,			-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,	,		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				-	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			· -		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	· · · · · · · · · · · · · · · · · · ·		0	U	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			8		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	-		-		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, ,	,		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$, , , , , , , , , , , , , , , , , , ,	,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			· ·		· · · · ·
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-	· · · ·		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $, , ,		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $,	,		U	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Kosson s 205:5			
253.4,12 257.5Intrig 83.8258:16,20,22Iab 134:1 249:7198:9,12 208:444:14 129:22259:16 261:12278:16 289:6198:9,12 208:444:14 129:22262:2,13,17,19,20Iaboratories 13:11224:1 225:13,16217:19,21 218:7264:18 266:1818:20 24:1 177:8230:3 231:20218:11272:11,19 274:3Iaboratory 42:9232:1 269:21Iegacy 27:10277:15 279:15,1746:16 59:16 73:14270:19 271:2290:10282:5 283:7,1674:15 78:19 101:4274:8Iegitimate 139:1294:18 295:8,10136:18 151:16279:6279:6296:7195:12 278:6,9,13279:6Iength 44:2 151:19		L			
259:16,261:12278:16 289:6215:2,7 220:13152:4 170:15likelihood 17:9262:2,13,17,19,20laboratories 13:11224:1 225:13,16217:19,21 218:7likelihood 17:9264:18 266:1818:20 24:1 177:8230:3 231:20218:11limit 7:3 43:17272:11,19 274:3laboratory 42:9232:1 269:21legacy 27:10179:10 265:9277:15 279:15,1746:16 59:16 73:14270:19 271:2legal 27:8290:10282:5 283:7,1674:15 78:19 101:4274:8legitimate 139:1limitations 17:9294:18 295:8,10136:18 151:16Larry 1:16 4:11225:1043:13 46:6 47:3296:7195:12 278:6,9,13279:6length 44:2 151:1957:7 92:3 104:20			,	, ,	8
262:2,13,17,19,20 264:18 266:18laboratories 13:11 18:20 24:1 177:8213:2,7 225:13,16 230:3 231:20217:19,21 218:7 218:11Likewise 102:20 limit 7:3 43:17 179:10 265:9277:15 279:15,17 282:5 283:7,1646:16 59:16 73:14 74:15 78:19 101:4 294:18 295:8,10230:3 231:20 232:1 269:21218:11 legacy 27:10limit 7:3 43:17 179:10 265:9294:18 295:8,10 296:7136:18 151:16 195:12 278:6,9,13279:6legtimate 139:1 225:10limitations 17:9 43:13 46:6 47:3 57:7 92:3 104:20			,		
264:18 266:1818:20 24:1 177:8230:3 231:20218:11limit 7:3 43:17272:11,19 274:3laboratory 42:9232:1 269:21legacy 27:10179:10 265:9277:15 279:15,1746:16 59:16 73:14270:19 271:2legal 27:8290:10282:5 283:7,1674:15 78:19 101:4274:8legitimate 139:1limitations 17:9294:18 295:8,10136:18 151:16Larry 1:16 4:11225:1043:13 46:6 47:3296:7195:12 278:6,9,13279:6length 44:2 151:1957:7 92:3 104:20			,		
201:10 200:10laboratory 42:9230:15 201:20late 110272:11,19 274:3laboratory 42:9232:1 269:21277:15 279:15,1746:16 59:16 73:14270:19 271:2282:5 283:7,1674:15 78:19 101:4274:8294:18 295:8,10136:18 151:16Larry 1:16 4:11296:7195:12 278:6,9,13279:6296:7195:12 278:6,9,13279:6					
277:15 279:15,1746:16 59:16 73:14270:19 271:2legal 27:8290:10282:5 283:7,1674:15 78:19 101:4274:8legitimate 139:1limitations 17:9294:18 295:8,10136:18 151:16Larry 1:16 4:11225:1043:13 46:6 47:3296:7195:12 278:6,9,13279:6length 44:2 151:1957:7 92:3 104:20					
282:5 283:7,1674:15 78:19 101:4274:8legitimate 139:1limitations 17:9294:18 295:8,10136:18 151:16Larry 1:16 4:11225:1043:13 46:6 47:3296:7195:12 278:6,9,13279:6length 44:2 151:1957:7 92:3 104:20		•		2.	
294:18 295:8,10 136:18 151:16 Larry 1:16 4:11 225:10 43:13 46:6 47:3 296:7 195:12 278:6,9,13 279:6 length 44:2 151:19 57:7 92:3 104:20	,			6	
296:7 195:12 278:6,9,13 279:6 length 44:2 151:19 57:7 92:3 104:20	· · · · ·			6	
			·		
Lustry 52.7 Highs 67.5 177.15,22 100.5				0	
					17710,22 100.0

180:19	LOAM 152:22	103:10 105:8	138:14 157:14	153:3,11 154:3,10
limited 7:7 14:21	153:4,8,13 154:6	110:9 116:2,6	163:4 187:1 269:9	154:13,20 218:13
44:17 46:4 47:14	154:11 219:12,17	127:7 167:6 183:6	maintained 157:20	232:7,8 233:11,16
48:7,11 73:18	220:2,4	198:5 207:11,14	maintenance-free	233:20 234:3,5,16
79:7 121:1,3	local 254:21 294:9	249:13 262:5	41:6,8	235:4 236:15
196:16	locally 293:21	263:14 266:22	major 32:6 35:17	239:4 240:1 241:3
limits 156:5 265:13	located 41:5	271:19 283:16	49:10 62:19	241:22 242:5,8,13
line 59:14 67:22	location 5:4 161:8	looks 102:21	173:13 223:16	242:19,22 243:2,4
94:17 198:17	295:11	173:13 298:1	300:20 304:9	243:8,11,19,22
linear 238:10,16	lock 278:3	loop 128:5	majority 225:6	244:11 245:1,4,21
247:22 248:1	logic 31:12 66:10	lose 201:22	229:5	246:3,6,14 247:15
265:20	122:12	loss 180:20 181:4	making 7:10	248:3,10,17,21
Linearly 149:14,16	logical 47:21 85:9	lost 303:20	119:14 296:9,10	249:5
lines 68:11,21 69:2	logs 195:20	lot 58:15 61:2 66:9	manage 138:13	map 36:5
69:5 84:18 131:10	long 30:13 42:15	96:19,22 111:1,8	186:15	MAR 260:13,16
131:12 151:15	44:14 60:20 69:4	111:11 136:11,20	managed 32:7	March 48:20
235:12 238:7,18	69:5 115:5 139:8	178:16 191:12	management 20:12	252:20 267:18
line-plugging	143:4 148:4	203:7 212:12,14	21:20 22:1 25:22	margin 203:11,18
234:20 235:1,7,12	184:10 217:22	213:1,14 227:22	32:19,20 59:3	208:9 253:9
237:11,22 238:4	221:16 253:11	245:5 262:13	93:22 95:11 96:1	280:12
link 5:10	275:13 294:13	276:14 289:15	168:19 186:17	marginal 80:10
liquid 34:7 43:11	306:13	lots 276:3	191:7 224:18	103:13 107:8
73:3 159:4 234:12	longer 228:5	low 33:6 49:12,12	240:18 244:12	108:12,20,21,22
234:15	long-term 11:11	103:5 106:8	282:22 299:19	margins 204:10
liquids 35:6	Loni 2:13 59:13	130:11 131:13	management's	207:17,20
list 6:5 30:15 62:16	look 38:10 71:4	152:19,22 163:20	303:21	Mark 70:21
216:22 241:4,12	78:21 85:3 86:2	235:2 282:1,11,15	manager 20:19	match 182:21
246:14 290:15	90:14 91:20 95:12	282:19 283:10	23:17 59:14 60:7	matches 85:1
listed 6:7	97:8 118:8 123:4	lower 51:13 55:11	60:13 70:19 228:9	matching 222:14
listen 146:15	124:5 127:2	55:20 65:18	228:11,15 290:20	material 37:7 40:4
lists 302:10	129:16,18,21	106:13 184:14	302:22	61:2 75:5,8 79:12
literally 74:13	130:7 143:1,3	217:20	managing 19:18	80:21 84:1 85:1,2
literature 53:22	153:8 172:19	Low-Activity 276:5	31:7	86:3,9,19 96:20
75:9 118:5	176:7 186:4 188:5	low-solids 49:14	mandate 15:12	96:22 103:20
little 62:13,21 77:1	189:2 201:19	lunch 298:11	manner 18:16	116:3,12 127:11
99:6 112:11 132:7	203:20 217:18	luxury 111:10	215:21 292:4,11	132:13,21 133:1,3
134:4 154:16	222:5 226:6,11	L-O-A-M 153:1	299:14	135:20 140:19
182:10 234:12	266:19 272:6		Mansfield 1:17	159:8 163:3
238:11 261:19	280:18,19	<u>M</u>	4:12 139:7,10	171:20 189:2
277:4	looked 97:6,10 98:4	M 2:13	141:14 144:3,4,11	200:10,18 201:10
live 296:13	118:19 119:2	machine 259:22	144:13 145:2,5,16	218:9 219:4 233:9
living 285:10	121:9 141:3	machines 98:20	146:2,6,9,18	235:9 243:14
289:13	146:16 149:17	Madam 92:16	147:15 148:1,14	248:4 260:14
Liz 307:6	150:4 157:8 231:5	97:12	148:17 149:1,6,10	269:7 275:10
loading 57:7 63:1	245:13 255:15	mail 64:5	149:14 150:1,8,14	304:7
98:9	looking 81:3 89:10	main 44:8 66:4	150:17,21 151:9	materials 18:4,13
loadings 79:16	101:22 102:10	maintain 74:20	151:18,22 152:16	72:7 79:7 182:19

				Fage 520
196:14 197:9,10	129:9,16 130:6	239:21 270:8	221:22 222:7	297:5,20
199:4 259:2	measure 47:2	285:7 286:5	223:9 225:22	met 1:10 214:1
material-at-risk	49:22 89:13	305:21	226:5 227:4,15	265:17 266:3
266:21 292:22	110:11 117:13	melter 264:14	228:17 229:3,18	301:9
math 236:12	123:12 125:9,22	member 1:15,16,17	230:2 231:19	meter 124:9
matrix 207:1,7	128:13 185:22	38:17 60:15 71:22	232:5,8 233:11,16	meters 104:1,3
Matson 307:6	239:8 241:8 242:2	75:15 144:4,11,13	233:20 234:3,5,16	method 47:4 153:5
matter 90:11	243:7	145:2,5,16 146:2	235:4 236:15	153:6
152:13 157:10	measured 47:7,20	146:6,9,18 147:15	239:4 240:1 241:3	methodologies
184:22 186:3	84:20 123:6,17	148:1,14,17 149:1	241:22 242:5,8,13	269:15
196:9 215:7	124:18 138:9	149:6,10,14 150:1	242:19,22 243:2,4	methodology
248:12 255:10	measurement 49:6	150:8,14,17,21	243:8,11,19,22	115:14
256:21 307:2,19	53:17 123:9	151:9,18,22	244:11 245:1,4,21	methods 155:7
matters 7:22 24:3	131:19 179:5	152:16 153:3,11	246:3,6,14 247:15	288:17 289:2
maturation 31:9	265:20	154:3,10,13,19,20	248:3,10,17,21	metric 102:6 103:3
94:5,8	measurements	154:22 157:10	249:5,12 252:19	110:20
mature 63:7	46:13 123:8	154:22 157:10	254:11 256:1.8	metrics 106:15
matured 31:19	241:10	159:17,21 160:3,6	257:1,6,22 259:10	230:8,12
maturity 61:22	measures 61:16	161:1,15,20 162:7	260:10 267:11	metropolitan 294:6
62:7 63:17	measuring 157:13	162:22 163:8,18	270:1,17 271:7	microfiltration
maximum 15:1	mechanism 162:10	164:8,17 165:8	273:4,8,19 274:21	284:4
37:3 102:12 104:2	248:15	166:3,6 167:2,14	275:18 277:9,20	micron 88:16,18
115:8	mechanisms 51:4	167:18 168:2,21	279:4,9 280:11	248:5 258:12,14
MCE 72:12 109:15	medal 290:1	169:2,16,22 170:3	281:16 282:2	microns 248:16
121:13 123:2	meet 36:2 43:4	170:6,11,14	283:12 284:10	microphone 109:18
125:2 132:2 199:2	57:14 78:8 80:11	171:18 172:5,8,10	294:7	293:19 307:9
mean 63:5 100:18	82:9 91:1 103:15	172:15,17 174:8	members 1:21 2:10	microphones
103:7 104:19	115:12 136:2	174:17 175:5,7,18	3:3 4:19 6:1,16	290:13
105:7,11 108:4	153:7 162:8 166:1	176:10,17,20	7:10 20:3,8 21:3,4	mid 12:8,19 49:20
114:2 125:12	180:15 187:14	177:18 178:1	27:21,22 30:8	81:12 134:16
136:15 164:14,15	203:2 212:8	179:9 180:18	33:21 38:16,21	135:12
170:14 181:17	234:19 237:10	181:9 183:3,13,19	58:12,15 228:1	middle 143:21
190:7 209:10	239:8 244:10	185:2,4,9,13	238:21 290:7	Mid-Columbia
210:7 217:19	245:7,19 248:1,8	186:9 187:16	295:15 296:7	72:12 136:12
218:15 239:17	265:21 272:7	188:14 189:8,21	memory 168:3	mid-2012 141:20
244:15 255:1	281:17,17 282:8,9	190:3 191:11	mention 80:7	165:20
260:3 270:3	285:6	192:6 193:3,15	mentioned 45:2	migrate 146:11
283:20 299:11	meeting 1:5 4:6 5:1	194:10 195:1	83:2 101:15 112:9	Mike 134:1
meaning 142:20	6:3 7:9,18 8:1	197:11 198:7	123:22 124:2	mile 295:6
meaningful 68:17	16:17 26:9 102:19	199:19 200:6	135:6 150:22	miles 295:7,9
173:8	102:19 139:18	201:3,17 204:22	153:20 174:18	milestone 166:2
means 25:14 39:16	166:11 267:18	206:13 207:3	175:22 176:12,21	280:8 301:10
40:15 136:4	270:4 303:14	208:12,16 209:18	186:14 189:2,9	milestones 48:19
141:12 209:1	meetings 75:3	210:17 211:5,10	190:7,18 205:22	million 18:2,3
244:16 245:2	138:19	211:21 212:2,16	214:11 219:15	22:22 28:14 35:4
248:15	meets 17:13 28:21	214:7,10,17,20	302:5	240:9 272:21
measurable 128:22	37:6 38:1 138:3	216:8 220:11	message 209:17	276:7 281:2,8
			Ŭ	, , , , , , , , , , , , , , , , , , ,
	•		•	•

201.16	117 14 17 106 1	207.0.222.12		120 15 140 21
291:16	117:14,17 126:1	207:9 222:13	monitor 8:19 135:5	130:15 149:21
millions 301:10	126:21 127:14	240:6,9,11,18,21	162:10 181:20	180:16 186:19
mind 175:20	128:10 136:21	244:8 270:22	monitored 19:12	215:20 218:1
177:14 197:12	141:5 156:1,16	271:1 272:7,9,20	monitoring 295:15	219:1 234:21
228:18 230:13	213:7 265:3	285:5 293:4	mono-disperse	235:3,14 253:8,14
233:2	mixed 44:6 45:7	mixture 11:9	79:9	muck 181:20
minds 177:5	100:7 233:6	119:18	month 15:16	Mult 172:15
mini 278:16	236:19 291:17	mobilization 53:18	220:20 239:19	multidecade 39:22
minimum 42:1	mixer 219:5	82:22 86:18	months 29:22	multiple 147:4
81:8 115:7 135:19	mixers 31:6 40:14	mobilize 86:8	58:15 97:20	148:15 155:12
136:2 149:20	40:15 62:22 65:7	114:9 236:5	220:21 221:9,18	172:17
minimus 129:4,5	65:14,19,20,22	mobilized 12:2	221:21 226:17	multiscaled 118:6
minor 285:13	66:6,11 67:20	52:2	250:8 264:22	myriad 142:5
minus 155:20	68:9 85:6 94:9	mobilizing 19:2	278:4,4 285:14	M-1 74:3 188:22
159:5	156:9 184:5	111:21 112:5	moral 27:8	M-12 74:4
minute 178:19	199:16 200:14	237:1	morning 9:8 20:2	M-3 49:10 64:10
minutes 7:4 30:2	mixing 3:4,8 18:8	mockup 168:10	21:2,8 27:21	71:4 144:8 164:6
148:20 215:1	18:15,18 35:20	169:12 206:1	38:20 70:10	219:14
238:22 290:11	36:20 39:2 40:11	mode 193:1 249:17	154:19 178:3,17	N
296:22	40:15 41:16,16	250:2	181:10 189:11	
mirror 37:20	42:10,19 43:7,8	model 96:9 112:10	morning's 17:18	name 4:3 6:11
misleading 277:5	44:20 45:16,22	112:12,13,14	18:20	38:18,22 298:15
misperception 62:7	47:12 48:1,22	136:13 152:20	motion 84:13	names 307:3
misquote 229:9	49:15 50:10,19	153:1 219:12,17	113:16 115:15	narrow 158:15
mission 10:21 25:2	51:2,10,12 52:6,8	220:2 251:19,21	126:15 145:20	nation 21:11
27:13 28:12 29:3	55:20 58:3 59:8	252:5 259:1,5	147:10 219:2	national 13:11
34:6 35:12 38:6	59:12,18 60:2	276:21	motivate 233:10	18:19 19:16 43:1
39:8,22 44:22	66:2,13 71:4,9	modeling 73:22	234:9 271:16	43:2 46:15 59:15
61:18 91:19 92:6	72:2,5,15,22 73:4	models 204:17	motivations 301:12	62:18 73:14 74:14
190:22 228:14	74:2 77:4,11,12	modification	motive 146:11	78:18 136:18
275:13 280:2,9	77:19 78:11,12,22	143:10 223:16	motor 210:13	177:8 283:19
283:3,4,7 294:10	79:2,10 80:9,18	modifications 8:14	move 38:7 42:1,5	294:20 302:17
294:22 298:21	81:1,5,9,19 82:10	35:9,14 98:4	66:10 69:3,6 97:1	nations 297:9
300:4,12	82:11,19 94:16	124:1 134:20	109:10 116:7,12	nation's 27:4
missions 294:20	95:5 98:7,8 99:18	181:7	132:13 144:16	natural 31:16
missteps 305:4	102:11 103:17	modifiers 182:18	145:15 147:1,19	nature 70:14 71:17
misting 17:11	104:13 105:2,15	modify 135:13	192:19 208:21	73:11 75:16
misunderstood	110:21 115:6	203:21 222:16	216:12 234:1	158:17,18 161:8
136:16 217:5	119:6,18 123:10	226:1 244:9	255:7 272:3,5	203:13
mitigate 56:12	125:13 136:1,3	molter 278:17	276:8 279:15	Navy 209:19
138:9	139:14,21 141:8	moment 16:1 93:19	290:7 293:5	near 55:5 205:8
mitigations 138:10	141:10,12 144:8	97:18 99:2 114:22	moved 108:19	220:14 249:20
138:13	152:21 153:7	216:13	147:22 263:6	275:2
mix 17:2,20 36:1	156:11 157:20	momentarily 128:3	movement 113:19	nearby 27:15
45:13 48:4 52:11	158:1 162:20	moments 204:11	135:20	296:13
57:5 65:10 91:2,3	173:18 183:7	momentum 209:8	movements 139:19	nearly 85:1 86:4
94:22 108:5,17	189:14 199:5,7,12	money 201:22	moving 41:8 56:14	152:6 276:8 277:5
				l

Neal R. Gross & Co., Inc. 202-234-4433

near-term 232:2	155:6 174:9,19	74:14 78:18	N2 242:14	off-bottom 50:11
necessarily 16:9	196:11 221:4	136:18	N20 242:14	52:6 81:1 84:13
132:22 166:18	226:1 241:1 253:2	notable 65:12		100:10 114:19
175:22 221:8	266:7 274:5	note 13:15 111:4	$\left \begin{array}{c} 0 \\ \hline 1 \\ \hline 1 \\ \hline \end{array} \right $	115:9 116:15
232:15 273:14	needing 222:16	305:9	objective 36:9	121:8 123:4
288:19	needs 26:3,4 128:7	noted 16:13 46:8	99:17 284:7	124:16 125:11,21
necessary 8:15 9:1	167:9 169:19	notice 5:22	objectives 35:22	126:20 130:21
17:8 23:7 30:7	176:8 223:11	noticed 5:2	43:4 77:12 82:20	131:7,9 141:12
35:15 41:17 50:11	229:14 270:4,8	notification 261:22	198:8 199:6	185:20 186:3
119:14 123:15	272:7 283:1	notified 33:12	241:19	off-normal 201:19
143:20 150:15	287:16 293:8	notional 142:20	obligation 138:16	off-site 181:4
237:10 245:12	negative 44:1	166:12	obligations 27:9	of-a-kind 12:20
297:2,14 305:5,14	231:17	novel 283:13	observable 115:2	Oh 105:5 185:11
necessitates 280:17	net 25:1 82:17	November 7:14	128:20	okay 60:22 63:15
necessity 268:14	84:12	32:16 230:21	observation 130:15	74:17 75:10 76:15
271:2	neutron 157:3	nozzle 43:11,14	observations 96:10	77:13 78:14,17
need 12:10 17:15	never 206:19	51:17 107:19	130:17	82:4 87:1 89:1,6
18:9,15 36:3 46:8	new 8:10 32:6	135:16	observe 128:13	92:14 97:11 99:3
55:15 65:9 69:6	35:10,14 50:5	NRC 305:21	185:20	100:16 103:11
85:20 90:10 101:8	62:8 63:19 67:8	nuances 276:16	observed 53:14	105:20 108:9
103:17 104:3	148:1 240:12	nuclear 1:3 4:5,21	obtain 30:7 263:20	109:5 111:6
112:18 113:7	266:7,17 267:7	8:11 24:12 27:10	obtained 201:7	112:12 113:8,12
115:22 123:20	newness 92:19	38:10 39:3 48:7	obtaining 13:9	117:6,12,18
125:11,21,22	news 167:4 295:2	48:11 60:13	obviously 75:18	118:18 123:19
128:5 138:8	Newtonian 88:9,17	164:22 251:14	112:16 118:3	129:4 131:11
142:22 147:16,17	109:3 139:13	291:10 301:15	143:5 206:18	139:16 141:13
155:4 165:6 171:4	141:3	302:16,20 304:19	213:20 293:7	143:12 144:14
173:9 174:20	nice 261:16 277:14	305:16,22	occur 16:17 44:12	145:3,16 147:15
175:1 176:13,22	nine 108:10	number 24:4 43:14	127:17 157:18	148:17 150:21
177:4,5 179:9	nominally 134:15	46:13 54:4 105:10	181:13 209:9	152:16 154:3,13
187:11 196:1,5	221:17	106:14 107:18	231:18 266:5	154:22 159:17,21
197:5 201:18,19	nonaccumulation	135:17 148:6	293:12	164:8 167:15
204:19 209:4	135:21	150:18 155:3	occurred 173:18	183:19 193:15
213:20,22 225:11	noncohesive 79:7	177:10 178:5	264:10	195:1 201:17
225:12 232:16	197:9	179:16 181:2	occurrences 44:18	208:16 214:17,20
242:17,18 246:10	nonconservative	194:11 202:6	OCTOBER 1:8	223:20 229:2
246:12,22 253:15	54:1	222:1 232:22	offered 38:16	230:2 233:11,16
261:11 268:7,14	nonprofit 298:18	253:6,12 256:1	offering 290:17	234:16 235:5
270:4 271:16,22	non-Newtonian	266:16 272:1	offers 38:17	239:3 241:3 242:5
272:13,19 281:10	86:5,6 109:3	275:1 276:6 279:9	office 20:20 23:17	242:13,19 243:4
282:4,6,10,16,18	116:12	283:9,13 303:20	26:4 33:11,12	243:11 244:1,11
288:9,17 289:2	normal 67:21	304:4	228:9,12 252:20	245:1 246:3,6,14
293:5,12 296:18	120:7 130:2	numbers 26:9	256:7 297:17	248:2,3,21 270:17
297:5 307:3	201:20	104:17 105:7,20	303:17	271:7 273:19
needed 24:8 43:5	normally 150:22	107:6 275:14	officer 28:19	279:4 284:15
50:6 55:6 81:22	Northwest 42:9	numerous 299:17	302:18	285:15 286:1
103:22 137:14	46:15 59:15 73:14	nurtured 300:5	offices 24:2	old 10:19,20

				Page 55
omission 268:1	78:10	256:13 267:2	291:1	owner 89:17
once 14:18 62:19	operating 10:6	279:2 289:4	organization 74:11	owns 69:20
83:6 94:3 118:7	17:10 24:13 40:21	306:10	75:13 294:1,2,5	oxide 85:2 250:12
118:12 125:1	44:19 54:10 55:10	operator 142:7	298:17,19	250:16 258:16,17
145:19 162:10,17	75:20 80:20 81:16	168:18,19 169:13	organizationally	258:20 259:7,8
168:11 207:17	90:19 92:12 104:9	169:15 206:1	262:15	O2 242:14
221:15 239:15	107:1,20 108:13	212:5 263:12	organizations	
252:11 286:2	120:7 135:14	operators 168:11	58:20 87:7 90:3	P
ones 71:3 124:17	169:9 173:6	209:22 210:6	93:1	Pacific 42:8 46:15
166:22 207:2	175:10 192:22	211:14	organization's	59:15 73:13 74:14
232:14	210:4,5,18 211:1	opinion 42:8 46:20	70:15	78:18 136:17
one-eighth 205:5	252:4 279:2	156:3 157:5	Origin 252:6,10,16	packages 87:22
one-fifth 86:14	285:20 286:3	161:17 218:16	original 7:3 23:3	88:2 192:21
one-third 85:13	287:13,15,17	opinions 111:11	48:8	pages 15:18 75:5
115:22 147:18	288:3	opportune 21:16	originally 55:21	panel 1:21 2:10 3:7
ongoing 240:7	operation 3:9 10:3	opportunities	78:20 99:16	3:12 18:21 20:2
241:18 244:7	10:13 11:20 13:12	188:7	108:11 112:13	38:12 58:18 60:16
269:20 272:10	16:21 17:21 39:14	opportunity 6:17	ORP 33:12 240:13	69:11 71:7 96:5
online 140:6	44:21 55:9 65:8	7:2 21:5 26:16	240:18 292:19	216:12 228:7,7
210:19,22 281:12	77:18 78:1 85:5	29:21 34:8,19	oscillations 157:18	panelist 61:7 65:1
297:15	125:3 130:2,12	58:21 81:10 93:7	outlet 161:17	panelists 61:3,4
on-bottom 84:13	172:11,12 175:13	134:22 153:22	172:21	289:21
115:15	181:21 199:13	176:2 198:20	outlets 157:13	panels 87:15
open 5:5 7:14 60:20	202:11,14 204:21	208:3,7 218:16	outline 176:5	paragraph 9:4
78:11	207:10,16,20	226:11 231:14,16	outlined 246:1	parameters 45:21
opening 3:2,5 20:6	209:15 241:7	272:18 290:17	265:21	52:14,15 90:19
20:8 66:7 134:11	252:2 261:13	298:3	outputs 225:16	92:12 164:21
178:12 214:13	264:11 291:4	opposed 86:17	outside 75:7 77:18	169:9
263:3 268:6	297:7	114:13 208:9	88:22	park 271:4
269:19		299:12	outstanding 14:15	part 9:9 15:21
	operational 13:5 13:14 14:19 31:4		overall 64:6 68:7	16:10 29:11 30:20
open-ended 179:12	40:3,5 58:1,4 64:2	optimistic 158:4	90:14 221:18	31:9 64:6,9 69:20
operability 88:4	, ,	option 120:20		76:22 77:15 78:13
90:16 168:8 196:21 263:15	92:3 187:14 204:9 206:5 210:8 231:3	226:6	251:11	83:3 87:22 94:1
		options 14:20	overarching 31:11 overblows 18:17	96:2 97:18 98:5
operate 11:4 16:22	269:1 270:10	156:17,19 181:15		98:16 115:20
29:2 35:1 38:5	295:14 296:20	182:1 203:21	44:12,16	119:19 138:17
39:20 41:9 44:3	297:13,19	283:9 284:1,2	overestimating	142:21 157:8,19
77:10 83:7 98:20	operationally	oral 9:15	208:2	164:5 176:13
127:4 180:20	210:15 250:18	order 6:8,11,21 7:1	overflow 106:9	184:12 186:20
206:4 226:17	operations 11:11	35:2 81:22 94:10	overly 88:11	184:12 180:20
232:11 267:1	19:4 22:11,14	115:21 119:9	overpredicting	191:5 192:9
292:12 299:9	25:16 26:5 27:10	147:20 152:19,22	252:13	191:5 192:9
304:15 306:7	33:22 34:2 49:8	173:7 178:22	oversight 4:20 10:1	209:16 215:8
operated 18:16	54:19 60:11 68:3	196:2,19 221:5	12:21 305:6	
26:13 53:13	76:8 175:1 187:2	230:14 236:20	oversimplification	229:22 242:11,16
104:14	205:11 209:6	259:12 263:21	229:12	243:15 244:6
operates 69:21	210:1,12 213:15	281:2,10 282:9	oversimplify 161:9	246:19 255:1,16
	l			

255 01 256 0	4 . 1 47.5	155 01 157 15	200.10	201.2
255:21 256:2	particular 47:5	155:21 157:15	298:10	301:3
263:2 266:17	74:2 95:7 105:3	158:3 159:6	personally 212:11	phased 93:15 95:6
282:19 283:6,15	180:1 198:9	160:10 179:1	296:2	97:3 215:16
287:1,16 288:1	199:12 233:2	235:2 236:13	personnel 19:18	phases 31:14 164:6
289:3 294:12	245:8 258:8 283:5	245:15 282:15	20:5 36:12	phenomena 111:14
partial 201:16	particularly 63:1	301:22 302:7,11	perspective 41:19	111:16,19 114:8
partially 86:14	88:10 167:9	percentage 66:20	56:14 77:2 90:15	115:2,19 116:9
participate 18:20	177:14 183:17	66:20 84:8 108:6	90:22 94:12 97:18	121:22 129:10
participating 36:13	226:14 295:4	120:5 229:19	97:22 115:4	philosophy 15:3
132:16	parts 41:8 143:20	perception 63:7	174:12 212:10	31:12 40:17 175:9
participation 19:15	163:15 231:6	perform 29:3 41:20	230:19 271:18	phosphate 237:16
50:14,16 59:21	Pascal 200:13	56:17 68:3 79:2	278:11 306:3	238:1 253:22
302:3	passing 119:19	90:19 92:1,6,13	perspectives 93:8	phosphates 237:17
participle 131:15	122:8	99:19 117:15	pertinent 53:5	247:14
participles 49:3	passive 266:19	141:2 142:8	pet 183:5	phrase 202:13
particle 36:21	pass/fail 99:19	153:21 196:3	Peter 1:12,14 4:4	physical 51:3 80:19
43:18 45:19 46:18	past-2020 273:18	207:10 283:3,19	Peurrung 2:13	92:10 165:19
46:21 47:2,4,8	path 14:12 161:11	284:6	59:13,13,16 61:13	179:15 198:2
57:2 88:14,15	165:22 194:6	performance 13:13	62:12,14 63:9,12	221:3,11,15 239:6
115:21 121:1,2	224:7 231:13,19	17:11 28:22 31:4	73:10,13 74:10,13	239:7
131:16 145:9	232:1	38:3 45:10 49:15	78:15,17 99:11,15	physics-based
147:11 157:1	Paul 2:16 213:18	52:17 54:14,17	100:3,15,21	79:20
159:3 182:21	228:13 235:10,15	55:5 60:10 76:3,5	101:11,21 102:4,9	pick 102:14
199:8 225:8	247:9 250:20	77:4 111:15	103:9 104:6,22	picture 30:3 144:16
247:17 249:1,2	255:15 261:17	123:21 179:5	105:12 106:16,21	146:22
258:10,12,14	262:17,22 271:6	196:4 199:5 202:8	107:6,15 108:1,8	piece 170:7 209:13
261:18 265:13,14	279:8 288:15	208:3	108:18 109:4	pieces 163:14
particles 42:11,14	pays 227:14	performed 55:18	116:15,18 125:16	pile 236:1
42:22 49:7 83:11	peanut 234:6	73:21 79:18	125:18 126:3	pilot 58:6 268:1
84:4,5,7,10	pedigree 164:19	118:21 119:4	132:6 136:15	273:21 274:1,4,18
102:14 111:3	305:14	166:20 208:11	140:8 141:7,11	277:10 278:22
116:6 121:11	peer 24:14 75:8	250:7	144:9,12 159:21	pipe 69:5 172:20
122:20 130:15	penalty 302:16	perimeter 219:6	160:1 176:17,18	248:1
144:16,20 145:14	people 6:7 146:15	period 48:20 60:21	182:16,17 186:14	pipeline 74:3
145:20 146:9,16	181:18 206:3	75:1 83:10 142:4	188:14,15 191:16	pipes 40:5 154:4
146:22 147:10,12	209:3 211:4	148:6,12 169:4	191:20 192:16	238:10,17
147:16,18 148:9	214:19 222:5	239:3,19 285:10	195:10 198:1	piping 41:1 149:22
149:21 150:6	256:2 264:17	295:22	227:19	154:12
152:3,4,5,7,9,10	265:1 279:10	periodic 72:11 75:3	phase 25:12,13	pivot 14:11 21:17
152:15 159:7	291:7 293:19	periodically 8:18	38:9 93:15 94:14	29:17 209:15
172:6 183:8,18	percent 13:18,20	permanently 219:8	94:19 97:6,7 99:6	pivoted 15:17
184:3,10,17,22	13:21 66:16 67:1	permit 7:6	99:7 108:14 109:6	pivoting 14:7 15:6
185:3,5,6 186:1	79:15 102:22	permits 290:11	109:10,13 121:14	30:9 34:12 56:3
208:6 217:4	103:16 105:15,20	291:3	123:7 125:4 129:1	208:20,22 209:1
218:18 248:5,11	120:17 124:7	perpetuates 301:6	132:8 135:12	209:10,16
248:16 258:2	128:1 151:3,4,5	person 19:15	136:11 141:4	PJM 42:19 43:3,5
265:10,10	152:7,8,11,12	192:10 290:15	144:10 209:12	44:12 45:3,9,16

40.0.10.15.10		1 4 50 10		1 (1 1 2 1 2 2 1 2
48:9,12,15,18	254:7 257:10,13	plate 53:18	pockets 120:11	164:13 188:12
50:1 51:17 54:8	266:11 272:18	platform 53:2	point 16:16 82:14	202:19 297:3
54:13,16 55:9,16	plant 9:12,13 10:10	90:11 194:20	84:7 87:4 89:3,8	possibly 168:4
56:6 58:2 62:8	10:13 11:3 12:17	platforms 52:19	91:3 95:8 103:11	post 297:22
71:4,9 72:2 75:19	12:18 13:13,18,19	play 163:17 165:2	114:17 120:9	posted 6:6
76:2,5 83:8 85:6	14:3,17 16:19,21	please 72:18 78:16	127:1 133:6	postpone 7:17
131:16 172:19	17:2,4,21 18:1	97:15 137:1	134:10 140:9	post-design 135:20
179:6 200:2 202:8	19:4,5 20:1,18	170:13 190:4	161:5 169:6,22	post-jet 94:22
202:10 225:6	21:6,10 22:18	202:21 220:15	170:9 171:13	potential 13:5
PJMs 40:14,16	23:8,16 24:3,10	280:5	177:18 189:10	17:19 24:22 56:6
41:7,9,19 42:12	24:15 25:1,12,18	pleased 295:3	193:18 197:1	56:13 72:4 83:18
48:3,22 49:5	25:19 26:5 27:19	plenty 115:10	200:12 201:11	120:4 156:22
53:12 55:19 63:14	28:10,11 29:5,16	280:13	203:16 204:16	180:7 241:4 258:3
64:3,13 67:10	30:12 32:3,3 33:1	plowed 147:2	210:3,8 211:16	260:18 272:2,18
77:10 78:2 83:7	33:22 34:5,11,22	plugging 40:4 49:6	212:4 221:8	304:12
91:1,22 111:9,16	35:2,7,21 36:15	68:21 74:4 237:15	223:16 263:1,19	potentially 44:16
124:8 135:17	39:11 44:2,19	238:18	270:10	91:13 119:7
147:4 200:16	59:6,9 60:5,8,14	plural 258:2	pointed 207:15	120:19 156:14
229:8,15 230:5	67:5 70:2 72:6	plus 155:20 158:18	points 98:10 101:6	pour 264:14 278:18
place 30:7 37:15	73:15 78:1 81:21	159:5	178:9,10 180:6	powder 73:3
46:22 94:5 116:1	88:5 127:16 136:7	plus/minus 157:15	189:18	power 83:9 98:7,8
128:16 152:9	162:10 165:1	160:10	poisoned 306:14	124:6,13 132:13
195:19 219:3	168:8 169:9	plutonium 85:2	poisoning 160:17	178:22 179:11
230:10 288:11	170:19 175:4,12	212:22 213:5	poisons 157:3	180:6,19,21 181:4
places 128:7	180:21 182:15	249:19 251:3,5	pole 221:16	184:12,12
plan 38:9 58:6	188:20 202:12,15	252:14 258:2	Poloski 2:21 39:1	powerful 186:7
93:18 94:5,8	206:4,5 210:4,8	265:10,14	Poneman 20:15	PRA 112:10,19
138:1,2 153:15	211:13 214:3,6	plutonium's 251:4	21:8 177:7	136:13
181:19 190:8	216:5 222:22	pm 307:18	poor 11:20	practical 115:8
204:4 210:20	223:16,19 226:20	PNL 62:2	PoO2 258:6 259:15	127:6
221:19 226:12	229:16 263:15,17	PNNL 2:13 46:15	portfolio 22:17	practice 5:21
233:4 235:21,22	267:16 269:8	46:20 47:15,20	portion 49:21	pre 13:20 39:11
236:8 240:7	273:21 274:1,4,7	49:11 50:9 53:10	130:8 148:10	40:17,19 44:7
259:10,18,19	277:10,13,16	62:4 70:12 72:11	184:14 307:10	74:5 187:11 241:6
260:2 278:22	279:7 281:11	73:12 88:14 97:5	portions 210:11	preamble 223:5
279:1,22 280:5,9	282:14 286:9	99:10 100:9	ports 91:16 98:10	preceded 134:7
293:10 297:12	287:5 292:4,6,10	108:14 111:7	pose 18:14	precipitates 246:16
305:20	295:12,14 296:4,9	113:6 123:6,17	posed 22:21 28:13	precipitation 283:8
planned 49:9 55:21	296:10,12,13,16	124:18,21 125:5	poses 291:17	precise 156:9
82:2 277:18	296:19 297:15,15	126:16 127:21	position 38:19	precision 155:20
planning 14:8	297:19 299:4,12	129:2 131:22	263:4,5,6 303:2	156:1 158:10
99:21 206:17	300:14,21 301:1	133:17,22 137:10	positive 130:13	241:9
210:1 228:14	301:20 303:2,18	140:5,9 144:7	298:19	preclude 174:15
237:5 255:16,22	304:17 306:5,6,16	191:17 202:1	possibility 72:9	175:3
263:20,21 264:4	plants 227:7 268:1	PNNL's 63:7	181:16 222:16	predecessor 73:17
267:7,8	plant's 14:10 17:10	109:21 135:6	possible 5:13 6:9	predicated 155:19
plans 232:20 250:4	17:11,20 18:8	136:9 185:21	15:1 72:7 164:13	171:14
	I		I	

Г

predict 45:8 52:17 52:27 25:1 104:11 presents 7:3 predicted 50:8 for presently 141:1 prior 31:5 48:5 proceedings 15:15 15:16.22 program 28:19 51:6.22 52:7 25:1 presently 141:1 158:2 179:3 presently 141:1 processing 15:16 18:7 31:16 47:11 50:19 15:16.22 54:20 55:1 76:9 president 3:17 60:10 293:20 proside 13:17 profities 177:10 a69:11 44:17 48:2 55:10 69:7 18:73:13 194:13 76:12 259:5 pressiding 1:12 predominantly predominantly for file pressiding 1:12 predominantly pretermating 45:5 prostice 17:10 protectice 20:15 a69:11,13 98:3 20:12 10:1 18:73:13 194:13 67:12 presumably 221:22 prefermating 45:5 prostice 20:15 protectice 20:15 prostice 20:15 probabilistic 99:13 101:3 106:6 215:3 220:13 21:23 20:19 237:20 240:619 157:4 184:16 217:6 prevent 95:18:10 prefermed 91:13 prefiminary 15:5 20:8 235:2 probable 42:14 premise 91:22 18:57 200:11 probable 142:3 18:78:18 191:7 239:20 54:17 76:6 29:21 24:18 24:17 26:18 231:3 23:21:15 238:12 20:19 28:16 11:2 248:6 20:12 28:56 20:12 29:21 24:17 26:18 20:12 24:18 26:16 25:12:22 24:17 29:20 51:17 52:15 29:21 24:17 26:18 29:20 51:17 36:17 29:20 54:17 76:12 29:21 24:17 29:20 51:17 26:17 29:20 51:17 26:17 29:20 51:17 26:17 29:20 51:17 26:17 29:20 51:17 26:17 29:20 51:17 26:17 29:20 51:17 26:17 29:21 24:18 27:17 26:19:20:17 29:20 51:17 36:11 29:17 30:11					Page 55
52:21 81:18 158:6 presenter 7:3 presents 47:22 98:11 156:16 proceedings 15:15 33:15 47:11 50:19 252:7 259:1 presents 47:22 182:14 187:4 precedicts 31:10 18:2 84:21 93:22 54:20 55:1 76:9 preside 4:6 presents 47:22 182:14 187:4 24:19 27:1 35:22 162:14 175:20.21 76:12 259:5 president 3:17 preside 3:10 189:7 26:91 44:17 176:13.7,13 276:21 60:10 293:20 priority 21:13 48:2 55:10 69:7 183:22 185:14 76:12 29:5 presiding 1:12 prosatrization 12:22 294:31.10:20 96:11 195:56 199:21 77:12 presuming 171:22 prosatrization 12:22 294:31.10:31 06:6 215:3 220:13 157:4 184:16 pretre 196:11 prestremt 3:8 Probabilistic 177:12 158:18 161:12 244:9 22:22 242:16 217:6 pretty 132:4 170:7 probabilisty 163:20 187:18 191:7 244:9 9 253:20 prettrenty 155: 38:02 30:8 235:2 probabilisty 163:20 187:18 191:7 244:9 9 253:20 prostres 91:22 prevalent 258:4 173:10 188:13 247:3 250:15	predict 45:8 52:17	104:11	prior 31:5 48:5	192:18	program 28:19
252:7 259:1 presently 141:1 158:2 179:3 15:16.22 51:8 59:17 71:3 predicted 50:8 presents 47:22 presents 47:22 process 13:10 18:2 48:21 93:22 162:14 175:20.21 76:12 259:5 president 3:17 priority 21:13 48:2 55:10 69:7 183:22 185:14 9redicting 96:10 presiding 1:12 priority 21:13 91:4,15 93:21,21 187:3,13 194:13 112:20 132:12 pressurizing 44:14 proactivel 20:11 proactivel 20:11 96:11,13 98:3 201:12 10:1 67:12 Presumably 221:22 proactivel 20:11 proactivel 20:11 96:11,13 98:3 201:12 10:1 77:14 B4:16 282:7 probabilistic 177:2 11:7 12:12,22 225:14,15 220:14 157:4 184:16 282:7 probabilistic 177:2 11:7 12:12,22 225:12 20:12 240:22 22:16 167:16 prevent 9:5 18:10 probabilistip 163:20 187:18 191:7 249:9 253:20 preferentally 13 15:17 20:11 159:4,5 164:10 244:6 246:8,13 programmatic 170:22 previous 6:18 221:20 238:13 255:18,19,22 257	-	presenters 7:3	-	proceedings 15:15	
predicted 50:8 presents 47:22 182:14 187:4 process 13:10 18:2 84:21 93:22 54:20 55:1 fo; presider 3:17 proititis 177:10 36:9.11 44:17 176:12 259:5 162:14 175:20.21 76:12 259:5 president 3:17 proinitis 177:10 36:9.11 44:17 176:13,7,13 76:12 259:5 president 3:17 proinity 21:13 48:2 55:16 697.1 183:22 185:14 9redicting 96:10 pressurizing 44:13 proactive 26:115 94:3,10.20 96:1 195:5,6 199:21 201:21 210:1 presuming 171:22 280:19 91:11 7122:12,22 225:14.15 230:14 157:4 184:16 282:7 112:10 185:17 200:11 probabilistic 177:12 151:3 157:9 237:20 240:6.6 170:22 185:7 200:11 probabilistic 187:18 191:7 244:9.9 253:20 170:22 18:12 57:6 186:8 173:10 188:13 231:3 232:15 29:20 24:17 6:6 170:22 18:12 57:6 186:8 173:10 188:13 231:3 232:15 29:02 24:17 6:18 170:22 18:12 57:6 186:8 133:10 188:13 247:3 230:15 29:02 24:17 6:19 170:22		-		- 8	51:8 59:17 71:3
54:20 55:1 76:9 preside 4:6 189:7 24:19 27:1 15:22 16:14 17:520.21 76:12 60:10 29:320 prioritis 21:13 36:9,11 44:17 176:13 176:14 176:15 176:14 176:14 176:14 176:14 176:14 176:15 176:16 176:14 176:14 176:14 176:14 176:14 176:14 176:14 176:12 276:14 176:14 176:12 276:14 176:14 272:19:13 171:15 270:24:14 20:12 20:12 20:12 20:13 277:02 240:22 240:22 240:22 240:22 269:13 283:11 177:16 176:16 176:16 176:16 176:16 176:16 176:16 176:16				·	
76:12 259:5 president 3:17 priorities 177:10 36:9,11 44:17 176:1,3,7,13 276:21 60:10 293:20 priority 21:13 48:2 55:10 69:7 183:22 185:14 112:20 132:12 press 95:15 privatization 12:22 91:4,15 93:21,21 195:5,6 199:21 predicting 96:10 pressuring 44:13 procurive 261:15 96:11,13 98:3 201:21 201:1 presuming 171:22 procurive 32:7 112:10 99:13 101:3 10:66 21:53 220:13 preferent 96:11 pretreatment 3:8 Probabilistic 127:2 151:3 157:9 237:20 240:619 217.6 pretty 132:4 170:7 probabil 142:3 198:6 21:22 259:3 264:2 preferred 91:13 185:7 200:11 probabil 142:3 198:6 21:22 259:3 264:2 premise 91:22 prevalent 258:4 92:19 133:13 231:3 232:15 285:6 302:14 properation 3:12 291:21 213:16 216:16 251:22 259:11 7 76:6 29:20 54:17 76:6 prepared 14:24 237:15 243:17 11:22:43:7 51:20 295:17 305:11 34:10 74:21 76:18 properse 21:72 6:2 279:11 138:12 145:11	1	-		-	
276:21 60:10 293:20 priority 21:13 48:2 55:10 69:7 183:22 185:14 predicting 96:10 pressiding 1:12 22:12 33:9,20 94:3.15 93:21,21 187:3.13 194:13 predominantly pressurizing 44:13 proactive 261:15 94:3.10,20 96:1 195:5,6 199:21 prefer 196:11 Presuming 17:12 proactive 261:15 96:11,13 98:3 201:21 20:1 prefer 196:11 Presuming 17:12 proactive 261:15 96:11,13 98:3 201:21 20:1 prefer 196:11 Presuming 17:12 probabilistic 12:7:1 12:10 237:20 240:6,19 157:4 184:16 282:7 probability 163:20 187:18 19:17 244:29,2 253:20 preferred 91:13 185:7 200:11 probable 142:3 198:6 212:22 259:3 26:42 premise 91:22 prevalent 258:4 92:19 133:13 231:3 23:15 285:6 302:14 prepare 21:7 26:4 87:7 18:10 159:4,5 164:10 244:6 24:68,13 programmatic 70:22 18:12 57:6 186:8 173:10 188:13 247:3 250:15 29:20 54:17 76:6 prepare 21:17 26:4 82:7 138:19 21:45:11 257:12 72:12 26:1		-			,
predicting 96:10 presiding 1:12 22:12 33:9.20 91:4,15 93:21,21 187:3,13 194:13 112:20 132:12 press 95:15 privatization 12:22 94:3,10,20 96:1 195:5,6 199:21 67:12 Presumably 221:22 proactive 261:15 96:11,13 98:3 901:21 210:1 77:6 Presuming 171:22 proactive 20:15 91:11 103 106:6 215:3 220:13 157:4 184:16 282:7 112:10 158:18 161:12 240:22 242:16 217:6 prettry 132:4 170:7 probabilistic 103:20 187:18 191:7 244:9,9 253:20 preliminary 155:5 230:8 235:2 probable 142:3 198:6 21:22 259:3 264:2 premise 91:22 prevaleut 258:4 92:19 133:13 231:3 23:15 285:6 302:14 preparation 31:2 291:21 213:6 216:16 251:22 254:17 52:5 135:7 294:13 38:12 205:19 previous 6:18 212:20 238:13 255:18,19,22 25:5 135:7 294:13 212:3 16:11 24:18 80:6 255:9 289:22 259:21 274:11 297:10.11 29:8 41:1 232:12 277:13 17 11:22 43:7 51:2 235:11 297:10.11		-		-	
112:20 jpress press pres press press <t< td=""><td></td><td></td><td>1 0</td><td></td><td></td></t<>			1 0		
predominantly 67:12 pressurizing 44:13 Presumably 221:22 proactive 261:15 proactively 32:7 96:11,13 98:3 201:21 210:1 67:12 Presumably 221:22 280:19 121:17 122:12,22 225:14,15 220:14 preferentially 85:5 pretarent 3:8 Probabilistic 127:21 51:3 157:9 237:20 240:6,19 217:6 pretty 132:4 170:7 probability 163:20 187:18 191:7 244:9, 253:20 preferentially 85:5 230:8 235:2 probable 142:3 198:6 212:22 259:3 264:2 prevale 91:12 prevale 91:81:0 185:4 516:40 244:9, 253:20 285:6 302:14 preparation 3:12 291:21 213:16 216:16 251:22 254:17 285:6 302:14 38:12 205:19 previous 6:18 221:20 238:13 255:18,19,22 29:20 54:17 76:6 29:8 41:1 23:12 237:15 243:17 11:22 43:7 51:20 295:17 306:11 34:10 74:21 76:18 29:20 276:2 279:11 138:12 145:11 252:8 programmatic 29:20 276:2 279:11 138:12 145:11 252:8 programs 55:2 29:20 276:2 279:11 138:12 445:11 <		- 0	,		,
67:12 Presumably 221:22 proactively 32:7 99:13 101:3 106:6 215:3 220:13 preferentially 85:5 pretreatment 3:8 Probabilistic 121:17 12:212.22 237:20 240:6,19 17:6 pretry 13:2:4 170:7 probabilistic 127:12 151:3 157.9 237:20 240:6,19 preferentially 85:5 pretury 13:2:4 170:7 probabilistic 187:18 191:7 244:9.9 253:20 preferential 13 preval 95:5:2 probabil 42:3 198:6 212:22 269:13 283:1 170:22 prevant 95:18:10 187:16 410 244:6 246:8,13 29:20 54:17 76:6 preparation 3:12 291:21 213:16 216:16 251:22 254:17 29:20 54:17 76:6 38:12 205:19 previous 6:18 121:24 18 80:6 255:9 289:22 259:21 274:11 297:10,11 prepare 21:17 26:4 82:7 138:19 218:8 problem 10:15 278:7,21 286:16 97:10:14 22:29 276:2 279:11 138:12 145:11 progressed 199:18 24:16 257:09:17 248:8 26:17 pre-feed 162:14,18 271:5 247:17 270:15 288:1 project 9:17 11:14 25:19 pre-feed 162:14,18 <td></td> <td>-</td> <td>-</td> <td></td> <td>,</td>		-	-		,
prefer 196:11 Presuming 171:22 280:19 121:17 122:12,22 225:14,15 230:14 preferentially 85:5 pretreatment 3:8 122:10 158:18 161:12 240:22 242:16 217:6 pretty 132:4 170:7 probabilistic 177:15:157:9 237:20 240:6(.19 preferred 91:13 282:7 probability 163:20 187:18 191:7 244:9,9 253:20 prefininary 155:5 230:8 235:2 probabily 82:14 215:18 223:22 269:13 283:1 167:16 prevatent 258:4 92:19 133:13 231:3 232:15 285:6 302:14 proparation 3:12 291:21 213:16 21:61.6 251:22 254:17 programmatic 212:23 16:11 24:18 80:6 255:9 289:22 259:21 274:11 297:10.11 prepare 21:17 26:4 82:7 138:19 218:8 267:5 271:11 85:21 116:9 processed 199:18 177:16 270:2 prepared 46:8 previous 16:7 problem 10:15 278:7,11 286:16 92:17 305:11 34:10 74:21 76:18 248:8 261:1,5 267:5 271:11 85:21 116:9 processed 199:18 177:16 270:2 prequalification			-	·	
preferentially 85:5 pretreatment 3:8 Probabilistic 127:2 151:3 157:9 237:20 240:6,19 157:4 184:16 282:7 probability 163:20 158:18 161:12 240:22 242:16 217:6 pretty 132:4 170:7 probabile 142:3 198:6 212:22 259:3 264:2 preliminary 155:5 230:8 235:2 probable 142:3 198:6 212:22 269:13 283:1 premise 91:22 prevent 9:5 18:10 159:4,5 164:10 244:6 246:8,13 programmatic 170:22 previous 6:18 221:20 238:13 255:18,19,22 29:20 54:17 76:6 preparation 3:12 291:21 213:16 216:16 251:22 254:17 programmatic 212:3 16:11 24:18 80:6 255:9 289:22 29:20 54:17 76:6 programs 55:2 29:8 41:1 232:12 237:15 243:17 11:22 43:7 51:20 295:17 305:11 34:10 74:21 76:18 262:9 276:2 279:11 138:12 145:11 252:8 progression 31:16 project 9:17 11:14 244:5 458:8 62:17 pre-feed 162:14.18 247:6 7277:12 270:15 288:1 project 9:17 11:14 259:16 pre-treat 170:4 234:10					
157:4 184:16282:7112:10158:18 161:12240:22 242:16217:6pretty 132:4 170:7probability 163:20187:18 191:7244:9,9 253:20preferred 91:13pretty 132:4 170:7probability 163:20187:18 191:7244:9,9 253:20preferred 91:13prevalent 258:492:19 133:13231:3 232:15259:3 264:2170:22prevalent 258:492:19 133:13231:3 232:1529:5 20 54:17 76:6preparation 3:12291:21213:16 216:16251:22 254:17programmatic212:3prevous 6:18221:20 238:13255:18,19,2262:5 135:7 294:13212:316:11 24:18 80:6255:9 289:22259:21 77:1129:5:17 305:11prepare 21:17 26:482:7 138:19 218:8problem 10:15278:7,21 286:16progress 21:6229:8 41:1 232:12237:15 243:1711:22 43:7 51:20295:17 305:1134:10 74:21 76:18244:8 261:1,5267:5 271:1185:21 116:9processed 199:18proferession 31:16prepared 46:8pre-qualification175:2prolematic 12:6300:1012:4,18,20,21289:18pre-qualification175:218:7 38:2218:9 40:6 41:219:9,15,19 20:17255:16pre-treat 170:4problems 40:3572:6 119:20,2120:20,21 21:10,15289:18pre-treat 170:4234:20 235:18processed 305:1225:10 26:17277:19 278:1pre-treatment183:7 192:11248:424:16 25:9,10,12259:755:10 56:12 68:1528:22product 305:1225:20 26:3 27:12 <t< td=""><td>-</td><td>U</td><td></td><td>,</td><td>,</td></t<>	-	U		,	,
217:6pretty 132:4 170:7probability 163:20187:18 191:7244:9.9 253:20preferred 91:13185:7 200:11probable 142:3198:6 212:22259:3 264:2preliminary 155:5230:8 235:2probably 82:14215:18 223:22269:13 283:1167:16prevalent 258:492:19 133:13231:3 232:15285:6 302:14premise 91:2218:12 57:6 186:8173:10 188:13247:3 250:1529:20 54:17 76:6preparation 3:12291:21211:16 216:16251:22 254:17programs 55:238:12 205:19previous 6:18221:20 238:13255:18,19,2262:5 135:7 294:13212:316:11 24:18 80:6255:9 289:22259:21 274:11297:10,11prepare 11:17 26:482:7 138:19 218:8prolem 10:15278:7,21 286:16progress 21:629:8 41:1 232:12237:15 243:1711:22 43:7 51:20295:17 305:1134:10 74:21 76:1824:8:8 261:1,5267:5 271:1185:21 116:9processed 199:18177:16 270:2262:9 276:2279:11138:12 145:11252:8project 9:17 11:1437:19 267:14175:2problematic 12:6300:1012:4,18,20,21255:16pre-feed 162:14,18247:67 277:12270:15 288:1project 9:17 11:14259:7118:7:3288:2218:9 40:6 41:219:9,15,19 20:17259:16pre-treat 170:4problems 40:3,572:6 119:20,2120:20,21 21:10,15277:19 278:1pre-treat 170:4234:20 235:18procure a05:1225:20 26:3 27:12259:16present 1:13,18,2	1 V	-			,
preferred 91:13 preliminary 155:5 185:7 200:11 230:8 235:2 probable 142:3 probably 82:14 198:6 212:22 215:18 223:22 259:3 264:2 269:13 283:1 167:16 premise 91:22 prevalent 258:4 92:19 133:13 231:3 232:15 285:6 302:14 170:22 prevalent 258:4 92:19 133:13 231:3 232:15 285:6 302:14 170:22 prevalent 258:4 92:19 133:13 244:6 246:8,13 programmatic 212:3 16:11 24:18 80:6 255:9 289:22 259:21 274:11 297:10,11 prepare 21:17 26:4 82:7 138:19 218:8 problem 10:15 778:7,21 286:16 progress 21:6 29:8 41:1 232:12 237:15 243:17 11:22 43:7 51:20 295:17 305:11 34:10 74:21 76:18 262:9 276:2 279:11 138:12 145:11 252:8 progression 31:16 prequalification pre-feed 162:14,18 247:6,7 277:12 270:15 288:1 project 9:17 11:14 87:19 267:14 175:2 problems 40:3,5 72:6 119:20,21 20:20,21 21:10,15 277:19 278:1 pre-treat 170:4 288:22 18:9 40:6 41:2 19:9:15,19 20:17 275:16 pre-treat170:4<					
preliminary 155:5230:8 235:2probably 82:14215:18 223:22269:13 283:1167:16prevalent 258:492:19 133:13231:3 232:15285:6 302:14premise 91:22prevent 9:5 18:10159:4,5 164:10244:6 246:8,1329:20 54:17 76:6preparation 3:12291:21213:16 216:16251:22 254:17programmatic38:12 205:19previous 6:18221:20 238:13255:18,19,2262:5 135:7 294:13212:316:11 24:18 80:6255:9 289:22259:21 274:11297:10,11prepare 21:17 26:482:7 138:19 218:8problem 10:15278:7,21 286:16295:17 305:1124:8 261:1.5267:5 271:1185:21 116:9processed 199:18177:16 270:226:29 276:2279:11138:12 145:11250:8project 9:17 11:14prepared 46:8pre-feed 162:14,18247:6,7 277:12processe 252:9project 9:17 11:1487:19 267:14175:2problematic 12:6300:1012:4,18,20,2128:16pre-qualification244:6,10,10 231:743:22 47:1 51:912:9,11 157:421:9 22:17 23:15255:16pre-treat 170:4problems 40:3,572:6 119:20,2120:02,021 21:10,1513:6,7,9 14:4 15:5277:19 278:1pre-treatment234:20 235:1,823:17,20 24:8,1023:17,20 24:8,10277:19 278:1pre-treatment234:20 235:1,823:17,20 24:8,1023:17,20 24:8,10259:755:10 56:12 68:15248:4 264:16244:2028:20 29:5,8,12259:755:10 56:12 68:15248:4 264:16244:2028:20					
167:16prevalent 258:492:19 133:13231:3 232:15285:6 302:14premise 91:2218:12 57:6 186:8173:10 188:13244:6 246:8,13programmatic170:2218:12 57:6 186:8173:10 188:13247:3 250:1529:20 54:17 76:6preparation 3:12291:21213:16 216:16251:22 254:17programm 55:238:12 205:19previous 6:18221:20 238:13255:18,19,2262:5 135:7 294:13212:316:11 24:18 80:6255:9 289:22259:21 274:11297:10,11prepare 21:17 26:482:7 138:19 218:8problem 10:15278:7,21 286:16248:8 261:1,5267:5 271:1185:21 116:9255:80262:9 276:2279:11138:12 145:11processed 199:18prepared 46:8previously 166:7147:6 159:13processes 252:9preparing 21:21187:3pre-freed 162:14,18247:15 247:1289:18pre-qualification224:6,0,0 231:743:22 47:15 19preparing 21:21187:3pre-treat 170:4problems 40:3,572:6 119:20,21239:11,15 244:14231:1068:22 72:4 84:15188:5,10 213:823:17,20 24:8,10presence 194:1644:21 45:18 47:13234:20 235:1,8procured 305:1225:20 26:3 27:12present 1:13,18,21primarily 237:16248:4 264:16244:2025:13 23:10,15present 1:13,18,21primarily 237:16286:2,0,0,12produce 236:2129:13 30:5,8,12present 1:13,18,21primarily 237:16286:2,0,0,12produce 236:2129:13 30:5,8,1226:22	-		-		
premise 91:22 prevent 9:5 18:10 159:4,5 164:10 244:6 246:8,13 programmatic 170:22 18:12 57:6 186:8 173:10 188:13 247:3 250:15 29:20 54:17 76:6 preparation 3:12 291:21 213:16 216:16 251:22 254:17 programmatic 38:12 205:19 previous 6:18 221:20 238:13 255:18,19,22 62:5 135:7 294:13 212:3 16:11 24:18 80:6 255:9 289:22 259:21 274:11 297:10,11 prepare 21:17 26:4 82:7 138:19 218:8 problem 10:15 278:7,21 286:16 progress 21:6 29:8 41:1 232:12 237:15 243:17 11:22 43:7 51:20 295:17 305:11 34:10 74:21 76:18 26:29 276:2 279:11 138:12 145:11 352:8 progression 31:16 project 9:17 11:14 17:19 267:14 175:2 problematic 12:6 proilit 244:18 project 9:17 11:14 289:18 pre-qualification 24:16 (0,10 231:7 43:22 47:1 51:9 72:6 119:20,21 20:0,21 21:10,15 29:11,15 244:14 23:110 68:22 72:4 84:15 88:5,10 21:38 23:17,20 24:81,0 277:19 278:1 pre-tr					
170:2218:12 57:6 186:8173:10 188:13247:3 250:1529:20 54:17 76:6preparation 3:12291:21213:16 216:16251:22 254:17programs 55:238:12 205:19previous 6:18221:20 238:13255:18,19,2262:5 135:7 294:13212:316:11 24:18 80:6255:9 289:22259:21 274:11297:10,11prepare 21:17 26:482:7 138:19 218:8problem 10:15278:7,21 286:16progress 21:629:8 41:1 232:12237:15 243:1711:22 43:7 51:20295:17 305:1134:10 74:21 76:18248:8 261:1,5267:5 271:1185:21 116:9processed 199:18177:16 270:2262:9 276:2279:11138:12 145:11252:8progression 31:16prepared 46:8pre-feed 162:14,18247:6,7 277:12270:15 288:1project 91:17 11:1487:19 267:14175:2problematic 12:6300:1012:4,18,20,21289:18pre-qualification47:15 247:1processing 17:1513:6,7,9 14:4 15:5prequalification224:6,10,10 231:723:217 23:1523:17,20 24:8,10239:11,15 244:14231:1068:22 72:4 84:15188:5,10 213:823:17,20 24:8,10277:19 278:1pre-treat 170:4problems 40:3,572:6 119:20,2120:20,21 21:10,15presence 194:1644:21 45:18 47:13234:20 235:1.824:2028:20 29:27:23:15259:755:10 56:12 68:15248:4 264:16procurenent27:18 28:3,59,16present 1:13,18,2116:0:14 163:328:23procure 28:2129:13 30:5,8,122:10,19 4:22		1			
preparation 3:12 38:12 205:19 212:3291:21 previous 6:18 16:11 24:18 80:6213:16 216:16 221:20 238:13 255:9 289:22251:22 254:17 255:18,19,22 255:18,19,22 255:12 274:11 278:7,21 286:16 29:8 41:1 232:12 237:15 243:17programs 55:2 62:5 135:7 294:13 297:10,11 278:7,21 286:16 295:17 305:11 295:17 305:11 295:17 305:11 295:17 305:11 295:17 305:11 295:17 305:11 295:17 305:11 295:17 305:11 216:10 74:21 76:18 278:7,21 286:16 29:14 158:8 261:1,5 262:9 276:2 279:11 29:14 58:8 62:17 289:18 289:18 289:18 29:14 58:8 62:17 289:18 29:17 15:2 29:17 11 255:16 prequalification 255:16 prequalification 224:6,10,10 231:7 224:6,10,10 231:7 224:6,10,10 231:7 255:16213:16 216:16 217:19 278:1 pre-treat 170:4 224:6,10,10 231:7 239:11,15 244:14 231:10213:16 216:16 217:19 278:1 231:10 234:20 235:1,8 248:2 20 21:10,15 248:4 264:16 259:7 251:10 56:12 68:15 248:4 264:16 259:7 251:10 56:12 68:15 248:4 264:16 259:7 251:10 251:12 251:10 251:12 248:4 244:20 251:10 251:12 248:4 244:20 244:20 28:20 29:5,8,12 244:20 28:20 29:5,8,12 244:20 25:20 26:3 27:12 25:20 26:3 27:12 25:20 26:3 27:12 275:10 276:4 275:10 27	–	1		· · · · · · · · · · · · · · · · · · ·	
38:12 205:19 212:3 previous 6:18 16:11 24:18 80:6 221:20 238:13 255:9 289:22 255:18,19,22 62:5 135:7 294:13 297:10,11 prepare 21:17 26:4 298:41:1 232:12 237:15 243:17 248:8 261:1,5 237:15 243:17 267:5 271:11 21:22 43:7 51:20 85:21 116:9 255:18,19,22 62:5 135:7 294:13 297:10,11 prepare 46:8 49:14 58:8 62:17 previously 166:7 prefed 162:14,18 problematic 12:6 processed 199:18 progression 31:16 preparing 21:21 pre-qualification 255:16 pre-treat 170:4 problems 40:3,5 72:6 119:20,21 20:0:0,21 21:10,15 prequalification 259:7 pre-treat 170:4 pre-treat 170:4 problems 40:3,5 72:6 119:20,21 20:0:0,21 21:10,15 presence 194:16 44:21 45:18 47:13 234:20 235:18 procure d 305:12 procure d 305:12 25:10 26:2 7:12 present 1:13,18,21 16:0:14 163:3 282:3 244:20 28:20 29:5,8,12 presentation 6:13 6:17 primarily 237:16 28:23 product 59:14 34:12,0,22.3 presentation 6:13 6:17 primarily 237:16 28:20 product 59:14 34:12,0,22.3 presentation 6:13 64:17 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
212:3 prepare 21:17 26:4 29:8 41:1 232:1216:11 24:18 80:6 82:7 138:19 218:8 237:15 243:17255:9 289:22 259:21 274:11 278:7,21 286:16 295:17 305:11297:10,11 progress 21:6 34:10 74:21 76:18 34:10 74:21 76:18 177:16 270:226:29 276:2 26:29 276:2 29:11267:5 271:11 26:17 49:14 58:8 62:17 88:62:17 89:18 preparing 21:21 255:16267:5 271:12 175:2 pre-feed 162:14,18 175:2 pre-feed 162:14,18 288:2211:22 43:7 51:20 25:16 product 59:13 288:22processed 199:18 252:8 processed 252:9 270:15 288:1 project 9:17 11:14 project 9:17 11:14 175:2 problematic 12:6 problematic 12:6 300:10project 9:17 11:14 					
prepare 21:17 26:482:7 138:19 218:8problem 10:15278:7,21 286:16progress 21:629:8 41:1 232:12237:15 243:1711:22 43:7 51:20295:17 305:1134:10 74:21 76:18248:8 261:1,5267:5 271:1185:21 116:9processed 199:18177:16 270:2262:9 276:2279:11138:12 145:11252:8progress 03:116prepared 46:8previously 166:7147:6 159:13processed 252:9project 9:17 11:1449:14 58:8 62:17pre-feed 162:14,18147:6 7 277:12270:15 288:1project 9:17 11:1487:19 267:14175:2problemati 12:6300:1012:4,18,20,21289:18pre-qualification47:15 247:1processing 17:1513:6,7,9 14:4 15:5preparing 21:21187:3288:2218:9 40:6 41:219:9,15,19 20:17255:16pre-treat 170:4problems 40:3,572:6 119:20,2120:20,21 21:10,15239:11,15 244:14231:1068:22 72:4 84:15188:5,10 213:823:17,20 24:8,10277:19 278:1pre-treatment183:7 192:11248:424:16 25:9,10,12presence 194:1644:21 45:18 47:13234:20 235:1,8procured 305:1225:20 26:3 27:1225:10 56:12 68:15248:4 264:16procure 305:1225:20 26:3 27:1226:22 47:9 89:16primariy 237:16286:2,10,12produce 236:2129:13 30:5,8,1226:22 47:9 89:16primariy 39:16286:2,10,12product 59:1432:9,15 33:10,156:17primary 39:16286:2,10,12product 59:1432:9,15 33:10,156:					
29:8 41:1 232:12 248:8 261:1,5 262:9 276:2 49:14 58:8 62:17 279:11237:15 243:17 267:5 271:11 267:5 271:11 270:15 288:1 277:19 267:14 279:1411:22 43:7 51:20 85:21 116:9 138:12 145:11 147:6 159:13 247:6,7 277:12 270:15 288:1 270:15 288:1 289:18 pre-qualification 255:1611:22 43:7 51:20 85:21 116:9 147:6 159:13 247:6,7 277:12 problematic 12:6 289:28 289:18295:17 305:11 processed 199:18 270:15 288:1 270:15 288:1 project 9:17 11:14 136:7,9 14:4 15:5 288:22 problematic 12:6 processing 17:1534:10 74:21 76:18 177:16 270:2 project 9:17 11:14 136:7,9 14:4 15:5 189:40:6 41:2 199:15,19 20:17 20:20,21 21:10,15 224:6,10,10 231:7 239:11,15 244:14 231:1034:10 74:21 76:18 processed 199:18 127:16 270:2 project 9:17 11:14 136:7,9 14:4 15:5 122:9,11 157:4prequalification 277:19 278:1 present 1:13,18,21 267:22 49:16proterteat 170:4 183:7 192:11 234:20 235:1,8 248:4 264:16 282:3 procurement 248:4 244:20231:10,15 248:4 244:20 244:20 244:20231:10,15 25:10 26:3 27:12 25:20 26:3 27:12 25:20 26:3 27:12 275:10 276:4 27:18 28:3,5,9,16 244:20 244:20presentation 6:13 6:17 resentation 6:13 6:17primarly 237:16 250:11 primarly 237:16 250:11 286:21,0,12 286:21,0,12 286:21,0,12 286:21,0,12product 236:21 27:10 276:4 27:10 276:4 27:10 276:4 23:10,15 33:10,15 36:14,15 37:12,21 36:14,15 37:12,21 36:14,15 37:12,21 36:14,15 37:12,21 36:14,15 37:12,21 36:14,15 37:12,21 36:14,15 37:12,21 36:					,
248:8 261:1,5 262:9 276:2267:5 271:11 279:1185:21 116:9 138:12 145:11processed 199:18 252:8177:16 270:2 progression 31:16prepared 46:8 49:14 58:8 62:17 289:18previously 166:7 pre-feed 162:14,18147:6 159:13 247:6,7 277:12processe 252:9 270:15 288:1project 9:17 11:14 12:4,18,20,21289:18 preparing 21:21pre-qualification 187:327:15 247:1 288:22processing 17:15 13:6,7,9 14:4 15:513:6,7,9 14:4 15:5 19:9,15,19 20:17255:16 prequalification 224:6,10,10 231:7problems 40:3,5 43:22 47:1 51:972:6 119:20,21 122:9,11 157:420:20,21 21:10,15 21:19 22:17 23:15239:11,15 244:14 231:10pre-treat 170:4 68:22 72:4 84:15procured 305:12 248:423:17,20 24:8,10 248:423:17,20 24:8,10 248:4259:7 presence 194:16 259:7pre-treatment 44:21 45:18 47:1323:23 248:4 264:16procured 305:12 25:0 26:3 27:1225:0 26:3 27:12 25:0 26:3 27:1226:22 47:9 89:16 present 1:13,18,21primarily 237:16 250:11procedure 287:22 286:2,10,12produce 236:21 275:10 276:429:13 30:5,8,12 210:18 211:1,5,12 275:10 276:431:10,17 32:1,4,7 32:10,15presentation 6:13 6:17 rimary 39:16proced 7:21 95:4 287:13product 59:14 45:16 47:2233:10,15 38:1,8 42:3 49:9 38:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4			-	-	
262:9 276:2279:11138:12 145:11252:8progression 31:16prepared 46:8previously 166:7147:6 159:13processes 252:9prohibit 244:1849:14 58:8 62:17pre-feed 162:14,18247:6,7 277:12270:15 288:1project 9:17 11:1487:19 267:14175:2problematic 12:6300:1012:4,18,20,21289:18pre-qualification47:15 247:1processing 17:1513:6,7,9 14:4 15:5preparing 21:21187:3288:2218:9 40:6 41:219:9,15,19 20:17255:16pre-treat 170:4problems 40:3,572:6 119:20,2120:20,21 21:10,15prequalification224:6,10,10 231:743:22 47:1 51:9122:9,11 157:421:19 22:17 23:15239:11,15 244:14231:1068:22 72:4 84:15188:5,10 213:823:17,20 24:8,10277:19 278:1pre-treatment183:7 192:11248:424:16 25:9,10,12presence 194:1644:21 45:18 47:13234:20 235:1,8procured 305:1225:20 26:3 27:12259:755:10 56:12 68:15248:4 264:16produce 236:2129:13 30:5,8,122:10,19 4:22198:4procedure 287:22produce 236:2129:13 30:5,8,122:10,19 4:22198:4procedure 287:22product 59:1432:9,15 33:10,15presentation 6:13250:11210:18 211:1,5,12product 59:1432:9,15 33:10,156:17primary 39:16286:2,10,12product 59:1432:9,15 33:10,15presentations 7:740:15 82:20287:1365:16 67:2236:14,15 37:12,217:11 <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>					
prepared 46:8previously 166:7147:6 159:13processes 252:9prohibit 244:1849:14 58:8 62:17pre-feed 162:14,18247:6,7 277:12270:15 288:1project 9:17 11:1487:19 267:14175:2problematic 12:6300:1012:4,18,20,21289:18pre-qualification47:15 247:1processing 17:1513:6,7,9 14:4 15:5preparing 21:21187:3288:2218:9 40:6 41:219:9,15,19 20:17255:16pre-treat 170:4problems 40:3,572:6 119:20,2120:20,21 21:10,15prequalification224:6,10,10 231:743:22 47:1 51:9122:9,11 157:421:19 22:17 23:15239:11,15 244:14231:1068:22 72:4 84:15188:5,10 213:823:17,20 24:8,10277:19 278:1pre-treatment183:7 192:11248:424:16 25:9,10,12presence 194:1644:21 45:18 47:13234:20 235:1,8procured 305:1225:20 26:3 27:12259:755:10 56:12 68:15248:4 264:16procurement27:18 28:3,5,9,16present 1:13,18,21160:14 163:3282:3244:2028:20 29:5,8,122:10,19 4:22198:4procedure 287:22produce 236:2129:13 30:5,8,122:6:22 47:9 89:16primarily 237:16286:2,10,12product 59:1432:9,15 33:10,156:17primary 39:16286:2,10,12product 59:1432:9,15 33:10,156:17primary 39:16286:2,10,12product 59:1434:12,20,22 36:5presentations 7:740:15 82:20287:1365:16 67:2236:14,15 37:12,217:11	,			-	
49:14 58:8 62:17 87:19 267:14pre-feed 162:14,18 175:2247:6,7 277:12 problematic 12:6270:15 288:1 300:10project 9:17 11:14 12:4,18,20,21289:18 preparing 21:21 255:16pre-qualification 187:347:15 247:1 288:22processing 17:15 189:40:6 41:213:6,7,9 14:4 15:5 19:9,15,19 20:17255:16 prequalification 239:11,15 244:14 231:10pre-treat 170:4 24:6,10,10 231:7problems 40:3,5 43:22 47:1 51:972:6 119:20,21 122:9,11 157:420:20,21 21:10,15 20:20,21 21:10,15239:11,15 244:14 277:19 278:1 presence 194:16 259:7pre-treatment 44:21 45:18 47:13 55:10 56:12 68:15183:7 192:11 248:4248:4 24:16 25:9,10,1220:20,23:17.2 20:20,21 21:10,15presence 194:16 259:744:21 45:18 47:13 55:10 56:12 68:15248:4 264:16 282:3procurement 27:18 28:3,5,9,1625:20 26:3 27:12 29:13 30:5,8,12present 1:13,18,21 2:10,19 4:22 2:20:21160:14 163:3 250:11282:3 procedure 287:22 procedure 210:5product 59:14 275:10 276:429:13 30:5,8,12 31:10,17 32:1,4,7 32:9,15 33:10,15 31:10,17 32:1,4,76:17 presentation 6:13 6:17 primary 39:16 7:11 110:10 124:3 present 46:8149:19 195:19267:22 292:6140:1936:14,15 37:12,21 38:1,8 42:3 49:9 56:4 59:5 60:4					
87:19 267:14 289:18175:2 pre-qualification 187:3problematic 12:6 47:15 247:1300:10 processing 17:1512:4,18,20,21 13:6,7,9 14:4 15:5preparing 21:21 255:16187:3 pre-treat 170:4 239:11,15 244:14pre-treat 170:4 231:10problems 40:3,5 68:22 72:4 84:1572:6 119:20,21 12:9,11 157:413:6,7,9 14:4 15:5 19:9,15,19 20:17239:11,15 244:14 277:19 278:1pre-treatment pre-treatment88:5,10 213:8 183:7 192:1123:17,20 24:8,10 248:424:16 25:9,10,12 25:02 66:3 27:12presence 194:16 259:744:21 45:18 47:13 55:10 56:12 68:15234:20 235:1,8 248:4 264:16procurement 244:2025:20 26:3 27:12 25:20 26:3 27:12present 1:13,18,21 2:10,19 4:22 2:10,19 4:22198:4 primarily 237:16procedure 287:22 286:2,10,12produce 236:21 275:10 276:429:13 30:5,8,12 31:10,17 32:1,4,7formarily 237:16 presentation 6:13 6:17 presentations 7:7 7:1110:10 124:3 140:15 82:20287:13 267:22 292:665:16 67:22 140:1938:1,8 42:3 49:9 56:4 59:5 60:4					-
289:18 preparing 21:21pre-qualification47:15 247:1 288:22processing 17:15 18:9 40:6 41:213:6,7,9 14:4 15:5preparing 21:21 255:16187:3 pre-treat 170:4288:2218:9 40:6 41:219:9,15,19 20:17prequalification 239:11,15 244:14224:6,10,10 231:7 231:1043:22 47:1 51:9 68:22 72:4 84:1572:6 119:20,21 122:9,11 157:420:20,21 21:10,15277:19 278:1 presence 194:16pre-treatment 44:21 45:18 47:13183:7 192:11 234:20 235:1,8248:4 procured 305:1223:17,20 24:8,10 248:4259:7 2:10,19 4:22 2:10,19 4:22 2:10,19 4:22198:4 primarily 237:16282:3 282:3244:20 244:2028:20 29:5,8,12 29:13 30:5,8,12presentation 6:13 6:17 presentation 6:13 6:17 presentation 7:7 7:11110:10 124:3 110:10 124:3287:13 proceed 7:21 95:4 267:22 292:665:16 67:22 products 59:1538:1,8 42:3 49:9 38:1,8 42:3 49:9fereform 56:4 59:5 60:4149:19 195:19267:22 292:6140:1956:4 59:5 60:4		-			1 0
preparing 21:21 255:16187:3 pre-treat 170:4288:22 problems 40:3,518:9 40:6 41:2 72:6 119:20,2119:9,15,19 20:17 20:20,21 21:10,15239:11,15 244:14 277:19 278:1231:1068:22 72:4 84:15188:5,10 213:823:17,20 24:8,10presence 194:16 259:744:21 45:18 47:13 55:10 56:12 68:15234:20 235:1,8 248:4 264:16procured 305:12 procured 305:1225:20 26:3 27:12present 1:13,18,21 2:10,19 4:22 2:22 47:9 89:16160:14 163:3 280:11282:3procured 287:22 procedure 287:22 procedure 287:22product 59:14 32:9,15 33:10,15275:10 276:4 31:10,17 32:1,4,7presentation 6:13 6:17 presentation 7:7 7:11primary 39:16 40:15 82:20 110:10 124:3286:2,10,12 286:2,10,12product 59:14 proceed 7:21 95:4 products 59:1538:1,8 42:3 49:9 38:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4			-		
255:16pre-treat 170:4problems 40:3,572:6 119:20,2120:20,21 21:10,15239:11,15 244:14231:1068:22 72:4 84:15182:5,10 213:823:17,20 24:8,10277:19 278:1pre-treatment183:7 192:11248:424:16 25:9,10,12presence 194:1644:21 45:18 47:13234:20 235:1,8procured 305:1225:20 26:3 27:12259:755:10 56:12 68:15248:4 264:16procurement27:18 28:3,5,9,16present 1:13,18,21160:14 163:3282:3244:2028:20 29:5,8,122:10,19 4:22198:4procedure 287:22produce 236:2129:13 30:5,8,1226:22 47:9 89:16primarily 237:16210:18 211:1,5,12product 59:1432:9,15 33:10,156:17primary 39:16286:2,10,12product 59:1432:9,15 33:10,157:11110:10 124:3proced 7:21 95:465:16 67:2236:14,15 37:12,217:11149:19 195:19267:22 292:6140:1956:4 59:5 60:4				- 0	
prequalification224:6,10,10 231:743:22 47:1 51:9122:9,11 157:421:19 22:17 23:15239:11,15 244:14231:1068:22 72:4 84:15188:5,10 213:823:17,20 24:8,10277:19 278:1pre-treatment183:7 192:11248:424:16 25:9,10,12presence 194:1644:21 45:18 47:13234:20 235:1,8procured 305:1225:20 26:3 27:12259:755:10 56:12 68:15248:4 264:16procurement27:18 28:3,5,9,16present 1:13,18,21160:14 163:3282:3procurement244:2026:22 47:9 89:16primarily 237:16250:11procedure 287:22produce 236:2129:13 30:5,8,12presentation 6:13250:11210:18 211:1,5,12275:10 276:431:10,17 32:1,4,76:17primary 39:16286:2,10,12287:1336:14,15 37:12,217:11110:10 124:3proced 7:21 95:465:16 67:2236:14,15 37:12,21presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4					, ,
239:11,15 244:14 277:19 278:1231:1068:22 72:4 84:15188:5,10 213:823:17,20 24:8,10presence 194:16 259:7pre-treatment 44:21 45:18 47:13183:7 192:11 234:20 235:1,8248:424:16 25:9,10,12present 1:13,18,21 2:10,19 4:22 26:22 47:9 89:16160:14 163:3 198:4248:4 264:16 282:3procured 305:12 248:4 264:1625:20 26:3 27:12presentation 6:13 6:17primarily 237:16 250:11procedure 287:22 26:22 47:9 89:16produce 236:21 250:1129:13 30:5,8,12 210:18 211:1,5,12 286:2,10,12product 59:14 65:16 67:2232:9,15 33:10,15 36:14,15 37:12,21presentations 7:7 7:11110:10 124:3 149:19 195:19proced 7:21 95:4 267:22 292:6products 59:15 140:1938:1,8 42:3 49:9 56:4 59:5 60:4		-	L /		
277:19 278:1 presence 194:16 259:7pre-treatment 44:21 45:18 47:13 55:10 56:12 68:15183:7 192:11 234:20 235:1,8 248:4 264:16 282:3248:4 procured 305:12 procurement 244:2024:16 25:9,10,12 25:20 26:3 27:12 25:20 26:3 27:12 25:20 26:3 27:12 27:18 28:3,5,9,16 282:3present 1:13,18,21 2:10,19 4:22 2:10,19 4:22 26:22 47:9 89:16 presentation 6:13 6:17160:14 163:3 198:4282:3 procedure 287:22 procedures 210:5 210:18 211:1,5,12 286:2,10,12produce 236:21 275:10 276:429:13 30:5,8,12 31:10,17 32:1,4,7 32:9,15 33:10,15 33:10,15presentation 6:13 6:17 presentations 7:7 7:11primary 39:16 40:15 82:20 140:15 82:20286:2,10,12 287:13product 59:14 65:16 67:2234:12,20,22 36:5 36:14,15 37:12,21presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4		, ,		-	
presence 194:1644:21 45:18 47:13234:20 235:1,8procured 305:1225:20 26:3 27:12259:755:10 56:12 68:15248:4 264:16procurement27:18 28:3,5,9,16present 1:13,18,21160:14 163:3282:3244:2028:20 29:5,8,122:10,19 4:22198:4procedure 287:22produce 236:2129:13 30:5,8,1226:22 47:9 89:16primarily 237:16250:11210:18 211:1,5,12275:10 276:431:10,17 32:1,4,7presentation 6:13250:11286:2,10,12product 59:1432:9,15 33:10,156:17primary 39:16286:2,10,12product 59:1434:12,20,22 36:5presentations 7:740:15 82:20287:1365:16 67:2236:14,15 37:12,217:11110:10 124:3proceed 7:21 95:4140:1938:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4	,	- · -		,	
259:755:10 56:12 68:15248:4 264:16procurement27:18 28:3,5,9,16present 1:13,18,21160:14 163:3282:3244:2028:20 29:5,8,122:10,19 4:22198:4procedure 287:22produce 236:2129:13 30:5,8,1226:22 47:9 89:16primarily 237:16procedures 210:5210:18 211:1,5,12product 59:1431:10,17 32:1,4,76:17primary 39:16286:2,10,12286:2,10,1234:12,20,22 36:534:12,20,22 36:5presentations 7:740:15 82:20287:1365:16 67:2236:14,15 37:12,217:11110:10 124:3proceed 7:21 95:4products 59:1538:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4		-			
present 1:13,18,21 2:10,19 4:22 26:22 47:9 89:16 presentation 6:13 6:17160:14 163:3 198:4282:3 procedure 287:22 procedures 210:5 210:18 211:1,5,12244:20 produce 236:21 275:10 276:4 product 59:1428:20 29:5,8,12 29:13 30:5,8,12presentation 6:13 6:17 presentations 7:7 7:1110:10 124:3 110:10 124:3procedure 287:22 procedures 210:5product 59:14 product 59:1428:20 29:5,8,12 29:13 30:5,8,12presentations 7:7 7:1140:15 82:20 110:10 124:3286:2,10,12 287:13286:2,10,12 proceed 7:21 95:436:14,15 37:12,21 38:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4	-		,	-	
2:10,19 4:22 26:22 47:9 89:16 presentation 6:13 6:17198:4 primarily 237:16procedure 287:22 procedures 210:5produce 236:21 275:10 276:429:13 30:5,8,12 31:10,17 32:1,4,7 32:9,15 33:10,15presentation 6:13 6:17250:11 primary 39:16250:11 286:2,10,12product 59:14 product 59:1429:13 30:5,8,12 31:10,17 32:1,4,7presentations 7:7 7:1140:15 82:20 110:10 124:3286:2,10,12 287:13product of 67:22 proceed 7:21 95:436:14,15 37:12,21 38:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4				-	
26:22 47:9 89:16 presentation 6:13 6:17primarily 237:16 250:11procedures 210:5 210:18 211:1,5,12275:10 276:4 product 59:14 product 59:1431:10,17 32:1,4,7 32:9,15 33:10,156:17 presentations 7:7 7:11primary 39:16 40:15 82:20286:2,10,12 287:13product ion 24:1 65:16 67:2234:12,20,22 36:5 36:14,15 37:12,217:11 presented 64:8149:19 195:19267:22 292:6140:1938:1,8 42:3 49:9 56:4 59:5 60:4	-				
presentation 6:13 6:17250:11210:18 211:1,5,12product 59:1432:9,15 33:10,15primary 39:16286:2,10,12production 24:134:12,20,22 36:5presentations 7:740:15 82:20287:1365:16 67:2236:14,15 37:12,217:11110:10 124:3proceed 7:21 95:4products 59:1538:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4	,		-	-	
6:17 presentations 7:7 7:11primary 39:16 40:15 82:20 110:10 124:3286:2,10,12 287:13production 24:1 65:16 67:2234:12,20,22 36:5 36:14,15 37:12,21presented 64:8149:19 195:19267:22 292:6140:1934:2,20,22 36:5 36:14,15 37:12,21			-		
presentations 7:740:15 82:20287:1365:16 67:2236:14,15 37:12,217:11110:10 124:3proceed 7:21 95:4products 59:1538:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4	-			-	
7:11110:10 124:3proceed 7:21 95:4products 59:1538:1,8 42:3 49:9presented 64:8149:19 195:19267:22 292:6140:1956:4 59:5 60:4				-	
presented 64:8 149:19 195:19 267:22 292:6 140:19 56:4 59:5 60:4	—				, , ,
•			-	-	,
05:13 87:21 271:14 294:10 proceeding 7:13 profile 32:5 62:1 70:16 71:19	-				
	03:13 87:21	271:14 294:10	proceeding /:13	prome 52:5	02:1 /0:10 /1:19

٦

71:21 73:12,15	protection 8:16 9:1	public 1:5 3:14 4:6	148:5 149:2	Q
74:7,15,21 75:3	10:7 33:13 38:8	5:5,17 6:1,3,16	172:20 184:19,20	QRA 154:7
76:18 77:8 78:19	188:17 189:4	8:1,16 9:2 10:7	247:22	quadrant 106:14
80:1 82:7,15	228:9,13,15	11:4 15:12,14	pumped 42:15	qualification
87:10 90:15 92:20	252:21 256:7	16:17 21:4 26:9	130:9	162:14,19 175:2
93:9 97:18 101:7	297:18	26:11,16,21 27:15	pumping 35:20	187:12 274:12
109:7,21,22 132:9	protects 138:4,4	27:22 33:18 34:9	127:21 148:20	287:11,21 288:18
133:7 137:19	protocol 88:6	63:4 72:18 91:18	150:1,3 271:15	qualified 187:4
138:14,15 139:4	prototype 50:2	138:5 177:4 211:7	pumps 183:10	193:14
140:11 173:11	prototypic 50:3	229:22 239:2	pump-down	qualify 159:2
191:19 192:1,17	81:13,16 121:14	267:18 290:7,18	130:20 131:1	qualifying 188:19
208:20,21 209:11	125:3,4,5 133:8	298:14,18 299:15	132:18 133:7,10	189:6 286:11,18
224:9,18 225:19	194:17 202:10	300:11 305:20	186:5 217:2,18	quality 35:22 36:9
228:12 230:21	prototypical 268:1	307:10	pump-out 84:11	91:5 140:1 177:13
231:1,6,14 259:20	268:2	publicly 5:2	128:4,17,22 129:8	241:17,19 300:22
261:10 267:16	proved 173:20	publish 303:15	129:15 131:18	305:11,12,18
279:22 286:9	proven 12:9 63:20	published 80:11	132:2 135:22	306:16
293:14	provide 11:12	283:20	147:14	quantitative
projected 10:20	14:12 17:15 20:21	pudding 192:14	purely 126:14	130:14,17 154:7
13:14 55:12	23:12 27:2 28:1,4	pull 30:10 143:4	PUREX 212:21	quantities 18:13
projects 22:6,9,15	31:3 32:11 34:20	203:14,17 278:2	213:1 252:9 277:1	234:14 249:19
23:19 24:12 39:7	42:11 59:22 65:5	278:15	purpose 86:20	253:8
94:1 191:7 209:4	89:18 91:17 92:9	pulled 239:16,20	98:18 112:2	quantity 233:3,4
project's 57:8	119:18 140:17	pulse 18:17 40:11	118:12 189:6	246:11
prolonged 268:4	153:6,18,22	40:14,14 41:10,10	206:18 264:3	quarter 83:16
proof 192:14	174:22 180:11,14	41:12,15 43:9,10	purposes 110:10	126:19 128:4
proper 10:12 41:16	181:3 231:7,15	43:12,15 44:13	118:5 205:15,18	129:19 130:5
45:8	262:16 282:14	65:7,14,19,20,22	274:18	184:20,21
properly 41:20	provided 15:17	66:5,11 67:20	purpose-built	question 7:10
44:6 46:21 52:11	25:6 55:8 59:8	68:8 83:22 94:9	271:9	53:10 57:15 61:8
128:6	75:6 99:10 127:15	94:16 95:4 107:18	pursued 13:8	61:9,12,14 62:11
properties 12:1	137:4 143:16	124:8,8 125:3	push 138:11	63:16 71:13,15
46:3 47:22 48:7	180:12 193:21	128:3 129:14	put 44:3 89:13 90:4	78:15 81:4 92:15
182:14 186:10,16	213:11	148:19 156:1,9,16	91:16 94:5 97:22	92:20 99:10
221:3 239:6,7	provides 26:19	157:19 158:1	128:1 137:6	113:10 125:19,20
241:5 246:15	41:15 50:18	159:10,14 179:6,8	147:13 152:7,10	127:9,21 136:22
278:19	207:19 291:11	179:16,16 184:5	164:5 170:11	139:6 155:9 160:8
property 201:6	providing 23:7	184:13	177:7,7 181:17	160:8 161:19
proportion 149:13	24:7 73:19 122:10	pulses 148:15,22	191:2 202:4 205:1	165:17 167:1
propose 213:10	133:9 207:12	pulse-jet 31:6	217:22 249:1	171:20 182:5
292:21	305:5	pump 79:13,16	268:12 275:14	191:15 195:11,11
proposed 56:10	provisions 5:6	100:10 105:15	279:7	200:21 212:2
156:2	prudent 15:4	111:17 130:20	putting 211:14	214:21 219:11
protect 27:15 33:19	PTF 247:18	131:2 144:20	218:9 247:10	220:10,12,17
58:4 271:1 291:6	Pu 250:12,16	145:7,8,8,22	P-R-O-C-E-E-D	222:8 223:7 227:5
292:8 299:14	258:15,17,20	146:2,4,6,11,12	4:1	230:1 237:7
protected 165:6	259:7,8	146:21 147:5,20	p.m 307:17	243:18 247:12
L				

٦

249:6 258:1 266:7	radioactive 10:16	252:20 256:17	reasoning 217:14	recommended 88:5
274:19 275:7	14:19 18:4 27:14	267:15 279:11	reasons 112:21	270:18 273:20
277:7 279:15	28:14 42:20,21	readdress 257:17	172:14	reconcile 125:6
285:16 288:5,14	291:16	readily 204:4	receipt 18:9 103:5	reconciled 124:20
304:14 305:4,15	radius 110:15	readiness 61:20	106:7 124:3	reconciliations
questioned 52:12	raise 64:12 178:10	93:17,20 94:2,7,7	161:22	124:22
53:8 121:7	200:21 299:21	94:11 209:15	receive 287:6	reconfiguration
questioning 70:12	302:8 304:5	215:17 231:3	received 261:21	249:18
questions 15:19,19	306:15	267:21 287:6,17	265:8,11	reconvene 7:17
16:3,14,15 58:10	raised 33:1 75:12	reading 5:17 21:7	receiver 271:10,13	307:17
58:12,16 61:4	76:19 82:16 87:6	284:18	271:14 272:1,15	record 7:13 9:14
67:7 68:7 69:17	87:10,14 88:21	ready 29:17 210:15	273:3,11,15,17	15:21 23:18 24:11
88:7 90:16 99:2,9	89:4 90:2 92:22	262:22	receiving 11:16	38:19,22 60:20
109:8 136:10	93:3 127:21	real 47:21 128:21	receptiveness	61:8,9 98:14
139:2 143:14	156:21 189:15	189:13 198:19	192:9	101:16 140:16
144:5,14 152:19	191:3,16,17 192:1	206:3,4	recess 7:17	144:7 191:2 202:5
171:10,16 178:4	192:12 193:11	realigned 262:15	recessing 307:16	205:2 210:10
181:15 182:12	299:18 300:15	realize 231:14	recipes 275:2	211:8,17 225:4
194:6,11 197:11	302:20	298:9	277:10	229:22 256:22
202:17 208:14	raises 230:15	realized 98:6	recognition 88:3	304:8 306:22
216:10,14 222:3	raising 77:15	really 82:20 86:16	193:7	307:19
228:19 232:6	301:17	86:19 112:3 113:8	recognize 91:10	recording 5:11
238:22 241:21	range 57:2 65:15	125:22 127:3	92:7 98:3,14	recovery 54:15
245:6 260:11	65:17 66:13 67:11	135:9,9 147:8	119:5 121:20	76:3 240:20 281:7
267:12 279:20	196:5 238:22	163:22 164:18	192:11 209:3	recruited 23:16
284:16,19 298:4	274:2	167:9 170:7 173:5	223:21 224:8	redesign 13:16,19
304:4,7	rapid 193:12	173:12 176:4	250:1 263:8	redesigning 105:1
quick 189:17 212:2	rapidly 84:9 148:8	196:8 197:21	292:13	redo 253:15 254:7
219:11 220:11	159:6 184:21	202:16 207:14	recognized 46:7	reduce 12:15 49:4
284:17	rapidly-settling	215:22 219:12	98:6 224:15	55:15 149:12
quickly 217:4	83:11 84:3 152:10	227:14 241:16	236:22 299:8	174:21 204:3,5
297:3 301:4	183:8,18	251:1 253:15	recognizes 39:13	reduced 98:8 222:6
quiescent 239:16	rate 79:1 99:18	262:13 306:6	39:20 211:18	260:13,15 267:4
239:17	rating 101:19	realm 274:2	230:20 298:22	295:6
quirk 126:11	ratio 102:16,16	realtime 137:6	recommend 8:12	reduces 179:18
quite 80:6 81:14	razor 138:21	206:12 269:5,6	recommendation	reducing 39:16
164:21 223:5	razor's 136:4 139:1	270:13	9:19 30:16 86:13	107:21 187:18
234:10	reach 171:22	reanalyzed 266:20	155:3,16 205:2,4	260:16 293:1
quote 8:9 32:7	201:13	reason 41:7 95:1	205:7	reduction 25:1
53:11,20 54:7	reached 269:4	147:14 168:10	recommendations	42:10
55:12 202:3 205:1	reaching 271:18	171:16 252:12	8:21 9:16,18	reevaluate 250:4
quoted 75:15,18	reaction 69:7	278:4	30:15,21 50:20,21	referenced 258:11
quoting 32:3	268:10	reasonable 8:13,20	51:7 54:7 89:19	referred 14:6 49:10
	reactors 151:17	125:17 138:10,13	90:17 140:10	88:15 144:7
R	read 20:13 125:10	169:16 171:19	155:2 198:16	181:19 247:2
radial 110:10 112:3	135:3 202:1,2	175:8 293:1	206:22 249:14	293:21
112:15	241:4,12 252:20	reasonably 122:1,2	256:9 269:18	referring 62:15

			1	
257:4 265:15	relative 74:21	121:11 147:11	represents 22:20	research 283:2
refers 243:17	207:12	removed 146:13	42:10 81:5 86:4	284:8 303:1
refill 83:10	relatively 46:12	303:2	reprisal 299:20	researchers 42:9
refine 174:20	62:21 63:13	removing 12:14	300:7	53:10 62:2
refined 31:18 36:8	release 52:3 111:22	28:13 34:6 147:12	reprisals 305:4	reserves 7:15
reflect 98:14	116:7 180:5	renoticed 5:3	306:15	resides 195:20
reforming 283:14	released 48:21	repair 67:14,18	reprocessing	residual 30:22 31:7
284:1	303:17	repeat 71:14 223:4	297:10	62:17 64:8 87:19
regard 92:21 184:2	relevant 28:6	298:12	reproduce 278:8	resist 212:9
245:15 247:3	reliability 22:11	repeated 41:14	request 20:10 28:7	resolution 55:9
272:2,10	300:22	repetitive 195:9	32:17 61:4 62:17	142:13 292:16
regarded 46:10	reliant 158:8	replacing 259:21	64:6 95:9	293:4 301:6
regarding 28:5	relied 46:4 49:18	report 25:5 30:3	requested 18:17	resolutions 192:3
36:17	relies 53:1	37:10 46:4,7,8,20	70:18	resolve 14:14 22:2
regardless 144:21	relooked 129:2	48:13,21 49:1,11	require 19:22	74:1 202:16,18
regimes 238:1	266:15	54:4 62:1 75:15	32:13,13 35:8	resolved 14:18
region 21:12 291:7	rely 69:2	80:7,12,12,14,17	49:7 54:22 76:11	24:19 31:20 54:11
291:19 292:8	remain 5:14 7:14	101:17 107:4	232:4 238:17	57:12 75:21
293:15 294:11	34:3 54:10 57:3	144:7,8,8,9 155:6	270:9	142:15 176:14
regional 298:18	57:12,15 75:13,21	160:14,22 161:7	required 37:16	resolving 10:14
regions 218:17	77:15 171:10,11	167:11,13 169:19	44:2 48:14 77:22	34:4 226:6 306:11
Register 5:2,22	182:7 195:8 202:8	174:6 187:10	94:21 102:13	resources 23:7,12
240:14	239:16 306:17	206:7 224:3	103:19 108:5	23:22 24:7 27:8
registered 6:19,21	remained 76:18	249:22 250:5	122:11 123:19	30:10
registries 224:17	remaining 22:22	252:21 253:4	124:13 134:20	respect 9:10 67:7
224:19	31:1 33:6 62:19	256:2,5,6,18	200:11 243:6	95:17,21 254:19
regulate 7:16 291:3	129:17,22 130:9	258:12 263:2	244:2,5 270:14	respond 137:1
regulates 290:21	remains 12:6 15:9	283:21 301:20	requirement 51:3	284:22
regulator 89:17	33:9 37:6 57:13	302:4 303:15,17	91:1 92:1 165:7	responded 24:9
regulators 291:12	225:20	303:19	265:21	response 16:2
293:3	remark 134:11	reported 244:13	requirements 13:4	19:13 53:9 60:18
regulatory 166:1	remarks 3:2,5 20:6	302:13	24:21 28:21 35:13	71:13 93:11,18
280:15,16 281:22	20:8,22 28:1,4	reporting 304:1,2	35:16 36:2,8 38:2	99:11 107:17
282:13 283:16	58:8 263:3 290:10	reports 88:14	43:5 47:12 51:2	137:3 153:15
304:20 305:17,22	remediate 11:6	137:15 161:13	51:12 54:10 57:9	181:14 190:13
Reinvestment	27:9	164:20 192:10	57:14 75:21 120:2	193:10,13,13
240:20	remediation 39:15	202:1,2,3,4	135:19 136:3	194:1,6 195:12
relate 40:1 223:17	298:20 300:4	repository 299:6	138:3 179:6	198:21 215:8
related 13:3 19:2	remember 132:17	represent 87:7 93:2	180:15 187:12	257:9 289:14
37:16 68:21	227:5 236:17	96:16	203:2,5 204:1	responses 71:9
relates 224:22	remind 212:14 remobilize 200:18	representative 88:8 143:7 171:8 269:3	211:2 239:21 241:15 244:10	193:1 284:18 289:15
relating 8:21 relations 54:13	remobilize 200:18 removal 49:7 56:11		241:15 244:10 271:1 272:6 285:8	
	57:10 91:7,15	representatives 20:3 70:12	requires 45:16	responsibilities 10:2 211:3
relationship 70:6 227:2,13	145:10 190:11		150:22 287:10	
relationships 55:3	143:10 190:11 194:17 303:5	represented 11:6 representing 74:10		responsibility 22:8 114:18 227:11
76:1	remove 27:13	156:10	requiring 56:1 resample 259:20	responsible 19:18
/0.1	1 CHIUVE 27.13	130.10	1 csample 239.20	responsible 19.10

29.17 20.5 50.17				
28:17 39:5 59:16	retrieved 291:20	right 4:12,13,18	risks 31:1 62:17	room 5:17 6:15
286:11,15 287:12	retrieving 235:13	7:15 30:1 64:11	76:6 89:11,14,18	40:19
304:16	return 83:11	65:11,13 66:17	138:7,10 208:1	rotating 183:10
responsive 178:4	returning 187:19	69:15 70:7 78:17	224:12 268:20,21	rotoring 284:4
rest 83:17,18	reuse 294:5	82:14 98:9,10	269:20	rough 46:11 236:12
149:17 171:19	Rev 101:17 235:22	100:2,3,14 101:10	risk-tracking	roughly 130:5
306:18	reverse 83:21	103:1 107:14	191:21 D: 12 4 20 20	302:7,11
restart 135:21	review 8:7,9,18	108:3 109:11,14	River 12:4 20:20	routinely 151:13
restarted 200:13	24:14,16,18,20	109:19 110:17	27:16 33:13 38:7	254:19 D 28 22 70 10
restriction 289:16	25:4 30:20,21	111:18 112:6	188:17 189:4	Roy 38:22 70:19
restrictions 19:22	32:2 33:2 48:21	113:6 119:16,22	212:15,17,19	RPT 101:17
restrictive 17:14	49:2 54:5 59:11	126:7 128:17	227:12 228:9,12	rule 101:13
restructured 231:2	70:22 71:1 75:2,8	141:13 154:15	228:15 252:20	run 85:14,15 86:12
231:4	76:20 95:13 118:4	157:9 160:3 161:3	254:16,18 255:19	118:8,9,10 142:1
result 17:12 25:1	122:14 133:13	167:2 168:13	256:7 261:8,9	172:17 181:5
40:2 44:6 52:7 54:16 55:10 71:6	166:10 176:2 220:14 230:21	170:6 172:9,13 177:20 179:13	264:7,20,22 265:5 276:3 278:20	186:4 189:17 200:5,22 206:19
		180:21 181:1		
71:22 76:5 85:5 91:14 108:10	231:1,3 250:7 256:13 257:3,4	205:17 208:14	281:6 291:18 297:18	262:2 277:11 278:5,16 306:13
126:14 136:6	291:10 292:15	216:18 217:7,12	Rivers 1:10	running 118:6
157:19 163:11	reviewed 50:19	210:18 217:7,12 219:10 220:8	road 36:5 138:12	rush 303:15
222:4,17 299:21	72:1 75:4 80:15	227:17 229:16	Roberson 1:15	Russo 2:14 60:3
300:10	124:22 137:11	232:16,18 233:7	4:11 70:8,9,18	62:5 63:16,19
resultant 293:11	141:4	233:13 234:7,13	71:11,16 72:17	64:21 87:4,5,8,13
resulted 86:10,11	reviewing 29:20	240:5 244:1,16	73:8 74:9,17	89:5,7 90:8
resulting 17:10	39:10 124:21	245:1,18 246:4,5	75:10 76:15 77:13	133:17,19 137:2
39:17	reviews 13:9 22:1	247:11 248:21	78:6,14 82:4 87:1	139:18 141:21
results 50:5 97:6	23:15 30:14,14	257:8,10 260:9	87:9 89:1,6,21	142:12 143:22
98:19 122:18	31:22 32:10,14	264:17 266:8	92:14 97:11,14	165:11,15 166:5,8
128:8 161:6 163:7	39:6 72:11 297:14	267:9 272:10	98:21 284:14,15	168:6,22 169:1,5
167:22 174:4	revise 51:11 249:21	275:11 276:10	285:15 286:1,13	169:21 170:2,4,10
226:1 244:7 285:4	257:11	284:20 285:21	288:6 289:11	170:13,21 171:22
285:5	revised 46:18 51:19	288:13 289:18	robust 52:8 139:14	172:7,9,13,16
resuspend 86:8	52:4 155:6,18	305:1	139:16 141:8,10	176:20 177:3
resuspension 49:12	160:21 266:13	rigid 230:8,12	141:12 225:21	189:8 205:16
86:18 119:13	285:13	rigorous 116:16	227:1 299:1 305:6	215:4,9 220:12,16
retain 124:12	revision 54:11	255:20 305:6	robustly 108:16	222:2 228:3
retaliation 304:2	75:22 155:10	risk 11:10 30:22	141:6 196:7	Russo's 205:13
retrieval 58:2	157:9 253:3 280:1	31:8 33:6 39:16	robustness 195:18	Rutland 2:16 96:5
233:19 237:14	285:1,14	50:13,15 54:17,18	role 8:7 28:8	228:13 235:17
254:8 270:21	re-sampling 259:18	56:16 59:20 62:18	140:17 154:11	236:16 239:10
273:5	rheological 182:14	64:8 76:7 87:19	193:20 261:15	240:5 241:14
retrievals 257:16	182:18 186:10,16	89:10,11 112:10	286:22,22 287:1	242:4,7,10,15,21
267:3	rheology 182:20	134:9 154:7 222:6	299:16 304:11,21	243:1,3,5,10,13
retrieve 233:21,22	rich 18:12	224:16,19 231:17	305:8	244:4 247:19
236:2 254:17	Richard 1:19 4:16	240:14,16 260:14	roles 304:14	248:7,14,19,22
271:21	307:14	291:15,17 302:6	rolled 266:14 267:7	250:22 252:19
L				

			1	
253:17 255:1	302:8,16,20 303:4	sampling's 183:11	scaled 53:12 79:22	sealed 91:11
258:9 259:16	303:16,18,21	188:12	113:14	seated 4:16,18
263:18 265:11	304:1,3 305:21	sat 260:4	scales 79:4 100:22	228:22
270:8 274:21	306:9,16	satisfaction 16:10	112:22 123:10	seats 58:20
275:6,20 276:1	safety-related	satisfied 36:22	151:8	second 35:20 48:2
277:17,21 281:14	37:18 40:10	270:1	scale-down 85:13	104:1,3 117:19
284:21,22 289:5	Sain 2:17 60:9	satisfies 176:8	scale-up 54:12 73:6	119:11 124:10
289:19 290:3	69:19 70:3 208:17	satisfy 172:3	74:5 76:1 77:5	160:8 169:13
<u> </u>	211:22 212:1,7,18	Savannah 12:3	81:10 85:19	181:22 206:9
S 1:12,14 2:12	214:9,15,18 227:4	212:15,17,18	133:14 151:19	214:8 221:2 228:7
s 1:12,14 2:12 sacrifice 297:4	227:9 255:8,11	227:12 254:16,18	171:12 198:17	228:22 235:11
safe 13:12 21:14	260:12 261:4	255:19 261:7,9	scaling 45:8 51:2	238:9 265:21
29:15 35:4 44:20	262:10 279:5	264:7,20,21 265:5	51:16 52:9,13,22	269:5 270:17
268:4 297:15	290:4	276:3 278:20	53:3,7,15,22 55:3	273:17 281:19
safely 11:4 18:1	salt 35:6 66:20,21	281:5	79:5 88:7 100:18	seconds 229:4
26:13 27:13 29:2	234:10	saw 62:18 225:22	101:10 112:8	secretarial 28:19
33:22 34:5 38:5	sample 36:1 159:8	257:7 289:14	113:5,16,17,21	secretary 8:13,20
39:21 292:12	162:19 183:16	saying 104:7	114:4 115:18	9:5,16,20 20:11
296:10 299:9	199:17 239:5,10	105:13 108:15,15	117:11 119:1	20:14 21:8 22:4
306:7	239:11,15,20	116:20 136:18	121:5 122:5 131:4	23:5 25:21 26:1 28:8 29:7 32:17
safety 1:3 3:9,10	240:2,3 241:16,17	159:3 165:17	133:10 138:20	
4:5,9 8:16 9:2	246:10 258:3	199:6,15 219:7,8 255:15	147:18 149:18 150:17 177:15	32:18 59:2 70:21 92:16 95:10 97:12
10:8,8,14 11:6	259:2,3 260:6 264:2 265:3 278:1			177:6 216:3,4
12:16 13:4,5	278:2,5,8 279:1	says 85:19 92:5 103:22 135:11	195:20,21 219:21 220:2	281:1 282:21
15:14 16:20 17:7	sampled 159:4	169:6 253:14	schedule 7:15	section 8:5,6
19:2,6 22:10,11	239:14 260:1	302:5	21:15 22:10 57:8	182:10 290:20
27:5 28:21 31:10	samples 96:15	scale 52:14,18,20	134:14 137:22	sections 101:17,18
33:9,12,18 37:8	200:10 246:11	53:11 55:5,5 73:6	138:14 142:11,20	sector 62:22
37:10,15 38:1	247:13 258:6,9,20	73:6 78:20 79:5,6	142:20 143:2,15	Security 33:12
39:12 40:1,2,9	264:2 278:15	85:15,17 86:13	166:12 171:14	303:17
41:19 44:6,9	sample's 239:15	91:21 101:7	173:14 210:21	sediment 50:1 52:1
57:11 60:13	sampling 37:4	107:10 114:15	215:8,9 221:17	sediments 194:18
111:22 120:12	54:16 57:13 58:3	115:6,9,21 116:10	225:2,15,17 260:5	see 65:19 102:1,5
155:5 160:13,22	76:4 94:17 96:13	118:11 120:22	306:13	146:10 148:22
162:4,17 164:7	155:19,22 156:2,8	121:5,15,22 122:1	scheduled 25:3	166:13 173:3
165:1,6 174:12	156:14 158:9,11	122:19 124:10	28:22 32:16 38:2	176:15 186:6,7
180:2 181:3 224:3	158:11 161:21	127:6,7,7 136:7	134:17 155:17	191:9 192:21
249:14,15,22	163:1 172:21,22	149:1,8,9,11,13	260:7	196:11 200:2
250:5,7,19 251:14	183:5,7,15 187:20	151:4,11,12	Schepens 70:19	211:22 222:13,17
255:2,4,13,14,20	198:10,12,14	163:17 166:15	science 23:17 73:20	223:17 238:14
255:21 256:9,10	203:17 240:6,8,11	171:4 186:6	138:6,6 283:19	260:20 262:7
256:12,14 267:18	240:19,22 244:8	196:15 202:22	scientists 74:11	265:18 268:14
286:6 291:10,13	251:20 259:11	204:18 205:5,5	scope 171:15 176:3	297:12 301:7
292:16 296:11	260:5 262:19	207:8 209:4 220:7	176:6 194:15	seeing 148:19
297:4 299:18	270:22 272:9	223:1,10 270:16	195:2 205:17	307:8
300:5 301:17	285:6	278:13	220:18 286:9	seek 24:6

٦

1 000 10				a 40 a a 50 5
seeks 298:19	286:22	show 108:19 208:7	171:6,7,8 188:9	249:2 258:7
seen 83:7 85:7	services 59:9 74:1	210:10 225:4	197:3,13 198:22	261:18 265:9,13
133:22 176:5	263:7	243:9 262:2	207:18 208:5	265:14 296:3
191:18 192:2,4	session 17:17,18	showed 50:6,10	222:1	sizes 43:18 57:2
199:2 208:20	38:15 96:20 212:3	showing 135:19	simulate 197:20	79:9 159:3 199:8
258:6,11	285:17 307:11,11	shown 42:5 51:8	simulates 202:16	skip 304:6
segregation 157:1	sessions 6:3	side 175:15 275:11	simulating 197:14	slide 146:16,19
157:2 160:16	set 81:11 104:12	276:5	197:19	slight 276:16
selected 126:4	117:22 175:3,10	sides 147:3	simulation 172:11	slightly 276:20
149:19	193:21 222:3	sign 6:18 94:17	205:9	slope 146:17,20
selection 41:7	225:14 230:12	signatory 140:14	single 53:1,4	slow 193:10
143:5 177:15	232:9,22 301:8	signed 6:22 290:8	118:11 146:4,6	sludge 35:5 213:7
197:3	setting 88:20	significant 13:16	214:13 234:8	225:8 232:13
Sellafield 63:22	175:16 279:3	40:3 42:10 47:9	single-shell 11:17	233:1,3,4,5,8,10
64:1,13,18 65:6	settle 200:9 201:13	47:22 56:15 62:10	12:7,8 214:11,12	233:17 234:3,6,21
65:14 66:14 69:21	settled 82:22 86:18	65:10 66:8 77:9	233:12,21 235:14	236:5,11,18 237:1
70:1	111:20 112:17	90:6 148:10	271:17 272:3	239:12 249:18
send 213:21	114:11 116:3	231:13 238:6	296:17	253:8,15 264:11
sending 213:9	120:5,6,18,19	281:1 291:17	sins 227:7	275:8
214:6 290:2	settling 42:13 84:9	292:19	sir 71:12 73:9	sludges 234:10
senior 22:7,19	121:3 122:20	significantly 47:18	98:22 158:19	236:19 238:14
23:13 263:6	148:8 150:18	50:7 65:18 66:3	169:1	slurries 42:20 45:7
286:22	159:7 184:22	222:6 264:19	site 5:10,12 12:4	73:4
sense 61:17 63:17	189:3 238:7	sign-up 6:15	15:20 24:1 26:4	slurry 45:19 46:3
64:18 110:21	settling-based	similar 65:21 123:6	33:10 39:15 70:19	46:10 48:6
117:12 131:22	157:1	149:4,7 276:2,15	212:20,21 237:16	small 46:13 52:13
177:17 192:15,16	seven 11:19 50:20	277:2 278:14,21	252:1 254:17,18	52:17 58:6 63:13
285:18 293:2	54:4 80:10 107:9	similarities 213:2	264:8,20,22 265:5	73:5 85:14 96:12
sent 64:5 80:21	202:7	simple 193:6	265:6 276:3	100:17 114:15
135:8 264:9 303:5	seventh 5:18	simpler 118:10	278:21 280:21	123:3 136:5 149:8
sentence 252:22	share 28:2 68:2	simplest 83:7	281:5,6 294:15	152:7,8 159:3
256:10	71:12 133:17	simplistic 217:10	295:6,21 298:21	179:19 184:16
separate 248:16	shared 67:3 88:12	simplistically 124:5	sites 12:3 177:9	234:14 284:5
separated 304:15	93:12 192:5	simply 51:21 55:19	sitting 86:3,9 186:1	smaller 53:11
September 5:4	sheer 53:16	96:12 107:5	193:6	54:20 66:3 76:9
29:9 33:11	sheet 6:15 106:11	114:10 118:15	situation 86:5	152:2,5 185:5
sequence 166:15	sheets 87:17 274:22	147:12 170:15	116:5 117:7	small-scale 49:20
series 140:19	shell 214:14 234:9	201:9 226:12	163:21 254:12	50:2,3,5 51:7 53:2
165:16	237:2	300:21	situations 14:22	54:5 90:11 110:4
serious 217:16	She'll 20:16	simulant 80:3 88:8	six 238:9 239:19	153:5 179:4
seriously 191:5	shift 20:1 33:7 85:9	88:9 138:20 143:5	278:4,4 305:9	snapshots 97:9
194:3 255:5	194:14	143:6 172:2	size 36:21 43:10,14	solely 11:1
serve 23:19 27:7	ships 209:20,21	177:14 201:12	45:20 46:18,21	solicit 134:2 221:11
served 23:3	shock 303:5	221:7,14,15,20	47:2,5,8 66:3	solid 42:2 102:6
serves 168:18	short 68:6 96:9	222:4 269:3	101:9 121:1 172:5	103:2 115:2 117:4
294:1	221:5 285:10	simulants 47:10	179:18 182:21	121:3 227:1 242:2
service 91:16	295:5	79:8 84:18 136:9	187:19 246:10	solids 18:7,11,12
	1			•

295:5 296:17 sort 73:5 101:12 spherical 258:13 status 130:4.5 159:11 188:22 **spoke** 91:7 stands 53:19 256:22 192:8 **spoken** 135:16 star 33:15 statute 8:3 283:21 start 61:1,12 70:11 statutory 9:10 10:5 **sorts** 63:1 73:22 **spring** 106:2 sought 21:22 71:7 93:5 109:13 110:1 10:11 15:12 sound 176:12 234:8 144:11 stay 228:5 237:21 110:5 155:1 293:19 square 295:6,7,9 165:13 209:13,14 257:20 293:19 sounds 276:13 stab 287:8 226:16 253:2.14 staying 219:7 295:8 stabilizing 12:14 268:22 273:13 stays 253:11 **source** 32:10 289:6.9 steady 53:17 19:3 so-called 234:5 Stacy 1:23 20:18 steam 283:14 **started** 278:14 Steering 139:9 **space** 89:10 249:7 28:3 34:15 228:10 starting 13:17 16:16 82:14 88:10 step 99:5 149:3 250:19 266:7 sparger 65:21 staff 1:18 3:4 4:19 166:3 167:5 188:15 278:6 stepping 300:18 spargers 66:1 21:4 38:17,17 **start-up** 211:2 **speak** 6:9 7:2 39:2,6,10,13,19 231:5 261:13 steps 25:7 297:8 109:12 264:6 40:11 42:18 45:11 306:11 Steven 2:22 39:1 290:8 293:6 298:3 state 3:15 6:11 55:13 56:14 57:16 stewards 27:7 307:4 58:13.16 74:15 49:19 77:8 90:21 **Stokes** 2:22 39:1 **speaker** 290:10 75:4,15 79:11 109:14 110:6,9 stood 109:6 speakers 6:5,10,11 80:7 177:11 113:2 117:9 stop 93:19 227:16 speaking 137:18 286:11 290:6 281:18 290:19 storage 35:7 39:17 spec 67:20 270:12 295:15,21 296:1,6 291:8 292:1 106:5 249:17 **specific** 23:9 49:8 staff's 39:22 46:20 stored 10:16 35:5 305:19 78:16 96:14 157:2 stage 119:21 stated 5:21 44:5 276:7 162:12 211:8 122:10 167:17 46:9 50:22 81:4 strategic 228:14 232:9 236:11 strategies 54:16 245:14 247:13 97:5 171:17 261:6 248:5 272:4 257:14 263:11 300:21 76:5 156:13 158:1 264:3 266:19 304:22 statement 20:13 172:20 266:16 21:7 37:21 63:6 267:2 **stages** 239:4 strategy 17:4,9 specifically 65:8 **staging** 232:22 164:3 174:6 57:17,18 69:13 66:22 68:2.5 234:17 236:10,16 178:12,13 222:15 93:13 94:14 95:6 75:11 78:21 153:8 237:6 239:13 249:16 253:7 120:8 156:2 162:4 191:9 266:2.18 271:16 259:17 268:7 165:1 186:15.18 specification 82:9 stake 287:8 279:12,17 215:15 235:18 99:16 stakeholder 50:14 **statements** 3:14 7:3 237:4 240:8

222:11 223:14

253:12 259:14

static 249:16 250:2

stations 271:15.16

statistics-based

STATES 1:1

State's 292:9

253:7,11

stating 38:18

138:18

248:20 253:18

267:8 268:8,13

299:2,4 301:7

streamlined 267:6

306:8

157:17

stratification

streams 252:8

strength 32:12

strengthen 27:3

214:1 294:17

292:19

233:14 243:19

41:17,20 42:1,5

42:13.21 43:18

44:5,7,10,12 45:7

45:13,21 48:5,16

49:12,13 51:13,21

51:22 53:19 54:21

55:21 56:13 57:5

57:7 62:10 63:1

65:10,17 66:13

67:1 68:10 69:3,6

69:13 72:8 76:10

78:3 79:16 82:17

84:16 86:22 98:8

100:11 105:9,13

105:16,21 107:21

108:4,6 111:17,21

111:21 112:5,17

113:11,13,19,21

120:18,19 124:2

128:21 129:3,17

135:15,21 152:1

153:9 161:9

163:12 164:21

181:11 183:8

186:18 216:19

217:16 218:19

219:18 235:2

236:13 245:15

solution 12:14

solutions 15:2

189:4 228:16

somebody 154:14

somewhat 161:5

soon 5:12 303:9

sorry 71:10 125:18

169:6 172:16

197:1 214:21

37:17 48:4 188:18

specifications

77:22 78:9,9

specified 78:10

specifies 253:6

spend 96:6 99:5

spending 306:2,3

spent 209:19 265:1

specify 51:13

speed 104:2

120:17

226:14

solve 43:22

solves 227:7

182:20

19:21 43:17

129:18,22 131:20

124:12 125:14

114:9 119:14

83:1.8.14.17

Neal R. Gross & Co., Inc. 202-234-4433

50:16 59:21

75:18

100:13

305:21

298:10

stand 53:14 74:11

standard 42:3 52:5

standards 286:4

standing 209:22

standpoint 150:4

Page 341

79:20

F				Page 542
stress 33:17 116:3	216:6 297:7	summer 264:1	255:11 262:4,6	system 25:16 31:3
200:13 201:9	successfully 23:8	Sunshine 5:7	264:18 266:4	45:3 52:8,21
243:2	26:4 27:12 29:2	supernate 233:10	275:6 277:12	80:18 81:11,13,17
striking 68:19	41:21 173:19	233:12 234:9	278:9 279:16	94:21 95:1 102:11
stroke 83:9	200:17	supplemental 3:13	280:14 285:7	103:18 106:6
strong 23:18 30:6	success-driven	56:1 282:1,11,18	297:18 303:10	168:19 172:21,22
strongly 22:4 55:14	173:11,22	283:10	surprise 231:9	173:2,7 180:3
282:22 292:14	succinct 76:13	supplementary	251:4 258:15,16	184:6 187:5
296:5	sucked 147:20	282:7	259:7	195:18 196:3,6,12
struck 284:19	suction 94:17 122:6	supplementing	surprised 217:3	196:18,19,22
structure 14:10	131:10,12 133:9	261:10	surprising 42:22	217:7 234:13,14
30:7	144:20 145:7,8	supplied 45:17	surrogate 189:10	235:22 236:6
structured 33:20	146:1,5,7,11,12	support 25:9,20	189:15	238:9,12 253:7
structures 37:19	146:21 147:5,20	34:2 73:17,20	surrogates 189:12	279:22 280:8
38:4	148:5 149:2	81:19 88:22 154:1	197:3	systems 14:10,13
studies 35:20	suctions 146:3	195:17 216:5	surrounding 26:22	17:12 18:8,15
118:20 119:3	sue 65:7	231:10 241:2	surrounding 20.22 suspect 301:1	37:15,19 38:4
126:16 141:2	suffer 11:3	249:15 256:10,12	suspected 12:7	79:2 94:18 99:18
272:9	suffered 299:20	261:12 274:6	57:20	104:13 105:2
study 86:6,6 283:19	sufficient 84:1	281:11 292:14	suspend 102:15	133:8 136:1 207:9
stuff 200:8,11	144:18 145:13	295:19 297:12	103:19 147:16	225:6 237:14,14
218:7	146:10 147:9	299:3 303:21	218:18	280:5 295:13
subcommittee	148:6,12 200:20	supported 53:19	suspended 41:22	SY-102 259:11,18
32:19 33:3 95:12	253:9	294:20	42:7 79:12 144:22	259:20 260:1
244:13	sufficiently 33:6	supporting 73:15	148:4 152:6	268:16
subject 8:1 92:8	57:5 145:20 235:6		184:10	
181:9 197:16	suggest 178:17	supports 27:6	suspending 84:7	T
subjects 7:9 181:22	279:10 304:18	55:14	86:22	T 271:19
submit 8:19 60:16	suggested 185:2,4	supposed 173:17	suspension 42:2	table 6:14 106:18
304:7 306:18	268:9 270:20	173:19	50:7,11 52:7 81:2	106:19
307:12	suggestions 206:21	suppressed 300:8	81:8 82:1 84:13	take 9:18 16:1 22:8
submittal 303:3	268:11	301:2	100:10,13 102:6,8	30:1 58:20,21
submitted 137:16	suggests 185:13	suppressing 301:16	103:3,7 104:4	61:7 81:10 86:2
subsequent 41:2	253:1	sure 78:7 79:11	111:2 114:20	93:6 94:6 103:4
subset 96:13	suitable 12:11	89:2 119:14	115:2,9,21 116:15	121:19 144:20
substance 173:15	suite 89:11 132:1	124:21 128:6	118:17 121:8	190:17 191:4
substantial 30:14	171:8 222:4	144:6 146:18,19	123:4 124:16	194:2 199:10,17
124:1 151:8,9	summarize 96:21	149:20 163:15	125:12,21 126:14	206:7 255:4
254:15	155:10 222:20	164:1 167:18	126:20 128:20	274:16 277:10
substantially 81:21	303:9	178:8,15 187:13	130:22 131:7,10	278:2,5,15 279:1
succeeded 174:3	summarized 87:3	190:9 196:3	141:12 150:9	taken 23:11 25:7
succeeding 27:16	summarizes 252:21	197:12 199:12	185:21 186:3	31:2 96:16 116:10
success 190:21	summarizing	208:21 211:17	Suzanne 3:14	152:3 155:13
successful 11:10	253:12	214:22 215:22	290:15,18	162:19 206:21
21:14 23:18 24:8	summary 76:14	219:1 225:20	swept 217:4 219:4	217:6,10 235:19
24:11 38:5 151:10	97:2 161:7,13	228:1 239:20	switch 210:14	takes 179:17
173:12 199:13	164:20 206:10	251:1 252:17	symmetry 205:21	220:20
	1	1	1	1

take-away 68:20	197:6,7,8,8,15	234:15 235:15	technically 29:16	224:20 258:7
talk 109:20 111:1	197:0,7,8,8,13	234:13 233:13 236:1,2,9,10,10	80:15	269:15 287:5
112:11 128:19	201:2 203:9,15	236:17,18 237:2,6	technique 85:8	296:11
139:10 154:4	205:17 206:16	230:17,18 237.2,0	242:17	Terry 62:3 64:5
197:16 292:18	207:12 212:4,13	247:1,5,6,8	techniques 289:8	134:1 135:6
294:16	213:3,4,4,5,12,15	250:17 251:11	289:10	test 52:19 53:13,19
talked 88:15 100:1	216:6 218:15,15	258:18,21 259:11	technologies 189:5	59:17 81:11 84:21
135:5 161:22	221:11,12 226:7	268:16 271:18	283:13 284:4	85:21 86:12,19
198:10 217:1	226:13,20,22	272:4 275:5 276:7	technology 24:19	92:8 99:16,17
230:3 247:9 263:3	227:6 228:12	288:22 292:7	36:5 42:19 48:15	118:10,11,13
266:3 268:7	229:14 232:11,18	296:18	48:18 61:17,19,22	128:8 130:20,21
270:20 271:8,9	234:17 235:13,20	tank-to-tank	62:8,8 63:8,18,20	131:1,18 132:18
273:1 287:12,14	235:21 236:6	249:18	63:20,21 64:19	133:9 138:19
talking 102:3 155:4	237:13 238:3,19	target 160:19,20	67:8 73:20 85:8	158:5 166:14,20
173:4 181:10	239:16,18 240:7	targeted 93:17	93:17,20 94:2,4,6	167:21 168:17
183:14 201:4	244:12 245:18	302:9	129:14 139:9	171:4 172:18
214:2 261:17	248:15 249:16	targets 186:21,22	215:17 267:20	173:6,12,22 174:1
281:14	250:8,12 251:9,16	task 26:7 32:21	269:13 281:3	175:17,19,21
talks 208:1 264:9	251:17,20 252:3,4	172:2	282:20 283:1	176:1,3,16 185:19
Tamosaitis 302:22	253:19 254:9,15	tasked 301:13	303:1	186:4,7 188:9
307:7	255:3,5 256:13	tasks 263:11	tell 75:11 82:10	194:20,20 204:7
tank 11:7,20 12:7	258:17,18 259:6,8	taxpayer 28:18	105:21 106:12	206:18,19 207:8
17:3,13 18:3 20:4	260:21 261:1,12	168:16	115:3 116:14	208:4 217:2 220:5
20:20 25:2,10	262:2,14,21	taxpayers 27:7	209:1 213:2 221:5	222:1,4 224:2
27:14 28:3,5,12	263:12 266:8,17	teach 85:18	226:12 241:8	225:22 231:10
28:15 32:19 34:2	267:1 268:5,17	team 30:8,21 33:2	268:18 275:7	239:5 246:16
34:7,20 35:2,11	270:3,7 271:11,17	33:21 48:21 49:2	278:3	269:22
35:15,19 36:4,12	271:20 272:22	50:16 59:11 64:16	telling 102:7 136:8	tested 78:5 187:4
36:14 37:11,21	275:1,9 276:12,22	64:16 70:22 71:1	150:9 265:9	220:6
40:6 44:4,15	278:3 280:20	76:20 137:5	tells 102:18 128:1	testimony 6:2 20:9
46:22 47:14 49:8	281:4,10 282:7,16	142:13 166:10,11	ten 115:6,8,10	38:16,18 40:9
55:22 56:1 59:9	283:5,8,8,11	206:16 253:1	151:5 155:3	60:16 66:7 267:15
59:12,17 60:1	284:2,3,6 286:1	301:21	221:20 238:22	290:5 307:13
78:8 83:12 86:4	286:17,21 287:3	technical 1:19 4:17	295:17 306:3	Testimony-Pulse
95:11 103:5,22	289:3 290:20	7:8 9:22 14:15,18	tends 114:12	3:4
105:17 128:1	tanks 10:17,18	22:1,9 24:3,16,17	tenet 162:3	testing 10:3 31:6,18
133:2 135:19	11:15,17 12:8,11	24:20 28:22 29:20	tents 162:9	36:6,7 45:9 46:19
136:3 140:1,1	23:1,2 25:17 35:7	32:6 33:1,5,6 34:4	terminated 302:19	47:11 48:14 49:12
144:22 145:21	39:18 41:18 46:5	36:10,16 38:2	terms 64:2 65:6	49:17,19,20,22
149:13 151:12	46:13,17 47:16,18	48:12 56:16 70:22	68:18 72:4 102:7	50:2,4,5,19 51:7,8
152:20 153:1	49:4 57:20 66:2	71:1,7 75:5,7,8	103:7 104:20	51:20 52:14,18
162:1,19 163:1	72:3 79:1,5 100:7	109:2 140:18	111:15 112:4,19	53:2 54:5 55:15
168:13 170:20	144:17 203:12	141:1 142:14	115:15 128:9	55:17,18 56:8,18
179:21 182:9,22	204:6,8 214:11,12	160:12,17 165:6	167:1,10 168:7,13	56:18 57:4,22
183:7,9,14 184:14	214:14 233:1,2,6	182:7 245:11,17	177:14 179:22	58:5 73:6,21

184:20 186:13

187:8,22 188:16

Neal R. Gross & Co., Inc. 202-234-4433

256:14 279:11

292:16 303:4

180:15 186:18

207:8 222:21

78:20 79:3,6,18

79:22 80:1 83:20

233:12,15,15,17

233:21 234:8,9,12

	I	I	1	1
84:22 87:18 88:6	123:2,3,6 128:17	273:20 289:12	189:8 190:7,7	THURSDAY 1:8
88:17 89:20 90:11	132:2,11,16 133:7	things 73:4 82:18	192:8 193:17	tied 232:3
91:21 98:17 99:7	141:22 143:9	83:3 84:19 127:2	195:16 198:14	tightening 43:19
99:14 100:8,22	151:15 153:21	127:19 136:11,17	202:17 206:9	51:14
101:2 106:3	165:16 166:15	147:9 158:7 161:2	207:15 209:3	till 71:10
108:14 109:6,11	171:18 173:14,17	174:2,18 176:11	210:9 216:14	time 4:8 6:18 7:6
109:13 120:3,21	174:3 196:18	176:13 177:2	218:12 220:16	8:13,20 11:12
120:22 121:14,15	198:13 200:4,19	178:16,20 183:20	223:20 227:10,14	12:6 15:7,10
122:4 123:13	200:22 201:4,5	187:17 188:5,8	228:4 229:8	21:17 22:18 28:2
125:4 129:1 131:8	thank 16:1 27:20	190:6 191:21	230:19 246:20,21	32:8 44:2 58:13
132:8 134:12,15	27:22 34:16 38:13	195:5 199:1	247:5 258:5	60:17,21,22 61:10
135:12 136:3,5,11	38:14 58:11 64:12	200:22 202:3	259:12 260:17,22	63:18 75:2 78:16
136:19 137:7	70:8,10 71:11	206:11 210:13	261:4,6,8,10	78:22 79:10 80:17
138:22 141:5,18	73:8 74:17 76:15	211:15 216:15	262:11 274:1	80:17 83:17 92:16
141:19,21 142:5,7	97:11,16 98:21	218:13 223:11,12	279:13,14,22	96:4,6 99:6 100:5
142:21 143:17	99:3 109:9 141:15	226:13 234:18	284:11 286:19	100:8 104:8,10,10
144:10 151:11	144:1,1,4 152:16	242:11 246:12,18	288:7 295:3	107:1,5 111:6
153:6 158:13	152:17 177:20	246:18 247:13	296:16 297:4	115:5 122:14
163:11,17 164:5	178:1,2 187:16	251:1 252:10	thinking 168:7	126:4 128:15
165:11,13,18	190:5 191:11,11	253:21 254:2	217:10 218:14	129:2 131:16
166:4,5 167:5,8	193:3,3,15 194:10	262:18	third 83:16 122:8	133:5 134:16
168:3,7,20 169:3	201:17 202:21	think 53:15 61:15	270:20	137:8 142:4 148:6
169:3,8,10,14	204:22,22 206:13	61:21 64:22 67:17	Thirty 209:18	148:13 154:17
170:1,2,9 175:13	208:12 209:2	75:14 76:13 77:6	thought 122:3	159:10 161:5
175:14 177:16	211:21,21 216:8	77:17 82:13 87:3	132:18 184:3	170:17 173:10
179:4 180:12,13	216:11 219:10	87:11 89:7,8	262:1	174:3 176:5
183:22 184:19	220:8 222:7	93:10 96:20,21	thousand 44:18	177:19 184:6
185:14 189:12,13	227:17,18 232:5,8	97:7 98:2,13 99:5	thousands 75:5	195:13 201:22
194:13,14 195:2,4	249:12 260:10	99:11 100:5	threat 27:14 28:13	204:3 209:13
195:14 196:2,10	267:9,11 273:19	101:15 107:4,12	34:6	210:3,16 211:19
198:9,11 199:3,21	279:4 284:10,13	108:16,18 109:16	threats 12:16	211:19 212:11
201:21 202:10,15	289:21 290:2,16	110:5,12,22 112:7	three 1:10 6:2	213:17 221:19
202:22 205:8,14	293:13,16 298:2,4	113:6 116:13	38:14 44:8 47:18	223:9 226:3
206:2 208:8,10	298:6 303:11	117:16 119:4	79:4 100:22 101:5	227:20 230:9
209:22 215:3,7	306:19,21 307:1	123:22 125:16	115:10 131:13	231:8 235:22
217:15 220:13	307:15	127:4,5,11,12,20	142:18 170:5	240:14 241:13
222:12,18 223:1	thanks 290:16	128:14 135:2	182:3 191:14	244:17 259:3
223:10,13,18,22	298:13	137:17 138:17	195:3 208:13	262:12,19 265:7
225:14,14,16	theory 86:15	140:8 141:14	209:20 219:6	275:14 278:20
230:4,14,16	145:19	151:13 154:17	221:9 224:4 265:1	285:11 290:12
231:21 232:2	they'd 132:10	155:10,14 157:15	265:16 275:16	292:20 295:22
268:2 270:16,19	thing 77:20 84:22	160:11,18 161:2,4	three-quarter	304:5 307:4,13
271:2 274:8	126:11 128:16	165:9 167:4 169:2	129:21	timeframe 273:18
testings 151:1	139:8 148:21	174:12,17 175:7	throughput 55:11	timeframes 252:13
tests 84:17 85:11	173:8 176:15	176:4 177:3,19	55:22	timeline 211:11
85:14 99:21	192:8 230:3	182:11,20 183:21	throwing 226:13	timelines 227:3
107:10 118:13	236:17 270:18,20	184:6 188:2,6	thumb 101:13	timely 16:2 292:4

292:15 297:19	tracked 224:16	11:2 12:17,18	trip 65:2,12	271:13 273:4,5
times 133:1 193:9	252:5	13:21 14:3 16:19	triparty 280:16	277:2 280:12
290:11	tracking 187:11	18:6 19:5 20:18	Tri-City 293:21	284:16 285:14
timing 70:15 71:18	192:2 194:8	21:6,10 22:17	Tri-Party 280:7	292:18 295:15
73:11 159:9,13	tracks 187:13	23:8,16 24:3,10	trouble 238:2	twofold 121:10
Timothy 1:19 4:17	tradeoff 204:11	24:15,22 25:9,11	true 62:20 64:20,21	TX 258:19
title 6:12 8:6 256:6	training 142:7	25:18,19 26:5	65:3 108:17	TX-118 268:17
TOC 213:15	168:18 169:13,15	27:19 28:10 29:4	129:16 131:4	TX-18 259:12
255:18 261:9	206:1 210:5 211:1	30:12 32:2,3,22	145:2,4 184:8	type 62:22 121:2
today 26:22 28:1	274:12 286:10	34:11,22 35:1,7	207:17	185:22 259:5
34:19 38:12 48:19	transcript 5:15	35:12,21 36:15	truly 72:22 114:20	266:5 274:14
61:14 77:16	transfer 121:4	39:11,12 40:18,20	138:20 171:7	276:18,19
166:19 167:20	127:22 128:11	44:8 56:1,2 59:6,9	try 58:9 79:4 104:2	types 57:21 77:10
211:6 213:17	189:7 237:14	60:4,7,13 67:5	127:3 159:13	77:11 80:8 108:11
232:21 234:22	238:9,12 247:8,18	70:1 73:15 74:6	192:12 195:17	158:1 268:16,20
235:3 238:4,5	252:2 253:19,22	202:12,14 216:5	197:19 236:2	275:8 276:12,15
240:8 241:20	254:3,5,8,10	222:22 226:20	238:21 275:3,4	277:3,4
245:6 246:2 247:2	255:16 257:13	229:16 241:7	298:11	typical 52:16
247:5,21 249:10	transferred 17:3	254:18 263:15	trying 17:22 69:17	184:17
250:5,5,9,15	42:17 122:20	267:16 269:8	90:1 105:6 114:8	Typically 101:11
257:19 258:10	transferring	274:7 277:16	114:9 116:11	130:2
260:18 267:4	238:13	280:2 281:11	125:8 147:10	
271:12 272:19,22	transfers 207:13	282:13 284:3	164:22 206:20	U
273:12,16 282:5,6	237:18 238:5	286:8 287:5	218:22 223:6	UFP 135:18
287:9,14,19	249:18 257:16	290:20 292:3,6,10	264:5 279:15	ultimate 16:21
288:22 289:4	267:2	295:12 296:2,15	282:3 285:3	ultimately 47:11
291:11 298:13	transition 14:7	299:2,4,12 300:14	tube 41:10,11,13	49:9 204:13
Today's 5:1	21:21 25:11,15	300:21,22 301:20	43:12	209:14 219:4
Todd 70:4	209:5 210:12	303:2,18 306:5	tubes 41:15 43:9,10	226:15
told 134:4	288:2	tremendous 209:7	43:15 44:13	ultra 106:8
tolerance 156:4	transitioning 14:2	291:15	107:18 124:8,8	ultrasonic 189:1
Tom 3:19 298:8,16	transitions 209:9	Triay 1:25 20:13	179:6,8,17	unanswered
tools 191:21 219:16	translated 211:4	21:1,2 27:20 59:1	tungsten 84:22	171:16
top 22:12 216:21	transmittal 16:13	59:1 93:5 96:18	turn 34:14 70:8	uncertainties 31:1
topics 231:16	transmitted 9:20	97:2 189:20,22	139:6 141:14	45:5,15 47:8 54:9
toss 127:17	256:20	190:3,5 208:18	turned 295:13	55:6 57:1 75:20
total 32:4	transparency	214:21 215:5	twelve 49:13	163:13 165:3
totally 214:3	26:19 192:9	216:8 222:8	two 16:3 23:13	174:21 175:16
262:11	transported 51:22	254:11,13 262:22	29:19 35:17 80:9	196:14 203:7
touch 181:21	transporting 238:2	279:19 280:4,14	82:20 83:1 100:1	204:14,20 260:19
touched 174:9	trapping 44:10	281:21 282:9	102:2,9,17 107:8	268:9
touches 291:5	treat 227:8	283:15 290:3	200:19 216:13	uncertainty 48:3
toughest 260:22	treated 229:14	TRIDEC 3:18	220:20 228:18	55:16 56:16 57:18
tour 99:4	293:7	293:22,22 294:7	235:19 240:22	187:6 195:20
toxic 10:15	treating 19:3	294:13 295:19	252:12 259:11	196:8 202:8 204:3
TPA 280:7 301:9	treatment 3:13	TRIDEC's 295:15	264:22 265:16	204:5 231:17
track 23:18 224:21	9:11,12 10:10,20	tried 236:21	267:22 268:20	unclear 197:14
			I	

٦

	1		1	
uncommon 151:19	125:11 157:6	153:12,13,16	vector 186:17	101:1,2,9,19
151:21	183:21 190:9	169:14 182:19	velocities 43:14	103:4 104:7 105:2
underestimation	213:16	189:5 220:7	68:11 81:22 85:15	106:7 108:11
208:2	undertook 13:16	290:14	102:17 104:19	110:14,16 111:17
undergoing 284:20	underway 35:18	useful 128:9 185:16	113:14 123:15,19	112:5 113:14,20
underground	36:6 294:22	226:14	124:17 129:12	119:15,19 120:14
10:16 35:6	unexpected 170:17	uses 46:3 61:17	131:7 135:16	121:6,11,12,21
underlying 10:14	unfair 176:1	220:4	220:5,6,7	122:22 123:3
291:18	unfortunately	usually 151:4	velocity 37:3 43:11	124:3,7,9,12,14
underpinning	228:5	utility 168:14	50:6,8 51:17	129:11,12,18
156:5	uniformly 152:6	utilization 169:11	53:13 85:16,17	130:10 131:11,14
underpredicted	unique 19:3	utilize 33:21 206:8	86:7,12,17,20	131:17,20 134:16
47:19	unit 279:2	utilized 286:17	102:8,11,12,13	134:21 135:14
underpredicting	UNITED 1:1	utmost 297:16	103:8,17 104:4,5	136:6 137:4,15
132:12	University 49:20	U.S 256:11	114:5,12,14 124:9	139:11 140:14
understand 17:22	109:14 110:6,9		124:10 149:20	143:10 149:21
45:22 66:5 69:17	113:2 117:9		150:2,3,5 238:10	150:10 153:12
72:15 78:7 82:8	unjustly 299:22	valid 156:6	238:11,16 243:17	155:21 156:1,10
89:2,18,22 97:21	unproven 62:9	validate 55:3 122:5	243:21 244:1	157:18 161:6,13
99:7 105:6 107:13	unresolved 75:13	169:8 196:2 279:7	247:22 248:1	164:20 167:10
112:3 116:20	77:15 195:8 301:5	validated 153:18	265:20	171:21 179:17,19
117:5 156:18	306:9	155:7 204:17	velocity's 113:5	190:10 205:8
158:14 160:7	unscrubbed 142:19	211:13	vendor 305:11	219:3 226:2 231:9
161:8,18 162:7	unsteady 53:18	validates 279:5	vent 180:3	269:21 274:8
165:13 179:10	unusual 163:19	validation 54:12,14	vented 180:4	vessels 18:9 40:4,22
189:5 197:18	update 34:9 284:20	76:1,3	verbal 16:11	42:6 43:7 44:8
199:4,20 204:15	updated 252:10,11	valuable 32:11	verbatim 5:14	48:2,15 49:13,14
205:19 208:22	252:12	value 103:6 105:19	verification 198:19	51:9,12,18,20,22
215:12 216:16	updating 167:16,19	116:21 117:21,22	215:20 286:4	52:2,11 56:12,21
226:19 227:11	upgrade 287:20	118:2,7 168:16	Verified 153:18	57:5 58:2 66:2
246:8 250:13	upset 127:16	206:3	verify 58:6 112:18	69:14 72:16 78:2
264:10 270:11,14	upsets 18:16	values 47:20	162:15 172:22	79:2,13 80:21
274:9 277:9	Uranium 212:22	valves 211:15	186:22 273:22	82:1 87:21 92:12
278:10 280:15	urgency 299:1	variability 187:9	vernacular 90:4,9	92:13 100:17,18
288:16,20	URS 1:23 2:17	variable 183:9	version 80:12	101:20 103:2
understanding	19:16 60:9,12	variables 102:3	265:19	104:18,20 106:4,4
12:1 16:5 64:15	69:19,19,22	variation 46:12	versus 77:10	106:8,9,10,19
69:11 74:20 82:3	227:12	varied 126:1	157:22 203:13	107:3,14 108:5,13
85:22 98:19	use 40:14,18 41:9	variety 30:10 47:1	vessel 41:12,16,22	109:3 111:5
124:15 155:15,17	42:4,19 46:19	72:6 73:19 186:12	42:2,16 43:15,19	117:14 120:16
156:15 163:10	47:10 51:15 53:15	various 112:22	44:17 50:3,22	121:16 122:17
188:6 195:7	54:1 62:5 63:22	123:10 149:18	54:9,14 55:4	123:21 124:2
207:19 241:6	64:3,13,19 79:8	166:16 172:3	56:19 57:12 67:15	125:15 126:2,13
246:22 247:6	86:13 90:3 101:12	241:6 279:2 291:3	67:19 69:6,7	126:15,17,20
251:8	110:19 112:19	298:15 300:2	75:19 76:3 80:8	127:13 130:3
understands 216:1	115:22 117:9	vary 198:3	84:10 87:16,21,21	131:13 133:4,9
1				
understood 119:18	136:12 142:8	vast 225:6	94:21 95:1 101:1	134:13,22 136:2

٦

136:21 139:13	vitrified 18:5	warned 49:2	186:11,13 187:3,7	290:20 291:5,10
141:3,5 142:22	vitrifying 299:5	Washington 1:12	187:8 188:4,10,11	290.20 291.3,10
151:12 153:10,19	301:14	3:15 5:19 49:19	187.8 188.4,10,11	292:7,10 293:5,6
154:2,5,12 156:17	voiced 302:7	109:14 110:6,9	197:22 198:5,6	292:7,10 293:3,0
157:13 158:9	volume 10:15 16:7	113:1 117:9	197.22 198.5,0	295.8 295.12 296:2,15 299:3,4
161:17,22 162:2	179:17	188:17 189:4	202:11,14 203:8	290.2,13 299.3,4 299:5,12 300:14
163:3 164:2	volumetric 205:6	228:15 261:17	202.11,14 203.8	300:20,22 301:15
165:20 166:1,21	Voluntary 33:15	265:16 290:19	205:19 212:5,7,13	301:20 303:1,17
174:14,16 178:22	vulnerabilities	203.10 290.19	213:8,15,21,22	306:5
174.14,10 178.22	62:16 64:7 134:5	wasn't 69:16	216:5,7 222:22	wastefeed 36:17,19
179.11 180.4,7,12	137:13 166:17	136:22 201:15	226:20,21 227:8	wastes 12:10 17:2,6
181:20,20 182:2	171:11 191:22	waste 3:10 9:11,12	229:6,7,13,16	22:22 27:14 197:6
181.20,20 182.2		10:10,16 11:2,7	232:12 233:6	197:15 199:22
	vulnerability 63:2 V&V 153:17	, , ,	232.12 235.0	
202:11 203:1,3 216:18,20 217:17	v & v 155.17	11:15,16,21 12:2 12:5,15,16,18	234:19 235:0,14 235:14,18 236:1,7	203:13,16 204:16 225:6 250:14
230:10 277:16	W	12:3,15,16,18	236:9,10 237:3,19	225:6 250:14 270:3 271:21
293:11	W 1:11,16	14:5,19 10:19	237:20 238:3,8	270:3 271:21 272:4 275:2
viable 54:15 76:4	WAC 43:20 78:9	17:13,14,20 18:5	237:20 238:5,8 239:5,6,8,22	watched 146:15
215:21	237:10 239:8	19:22 20:18 21:6	240:6,8,12 241:4	water 88:10 200:10
vice 1:15 4:10	243:9	21:10 22:17 23:8	240.0,8,12 241.4 244:12,15 245:8	208:5,6
60:10 70:9 71:11	wait 253:2 288:8	23:15 24:3,10,15	244.12,13 243.8	wave 303:5
71:16 72:17 73:8	waiting 211:20	24:22 25:2,9,11	247:5,16,20 248:8	wave 505.5 way 61:21 77:10
74:9,17 75:10	228:18 306:9	25:17,18,19 26:5	249:3 251:9,10,19	82:19 84:14 85:9
76:15 77:13 78:6	walking 265:2	27:19 28:9,12,15	251:21 252:8	85:18 89:15 90:15
78:14 82:4 87:1,9	wall 53:16 147:3	29:4 30:12 32:2,3	253:20 254:17,18	94:2 99:21 104:18
89:1,6,21 92:14	Walt 307:7	32:19,22 34:7,11	257:12,19 259:1,5	130:3,11 132:17
97:11,14 98:21	Walter 302:22	34:21 35:1,3,5,7	260:15 261:2,6	140:17 146:12
video 5:11	Walton 62:4 64:5	35:11,15,21,21	262:9,21 263:15	151:7,22 152:1
videostreaming 5:9	134:1 135:6	36:1,7,15,20 37:2	263:16,19 264:13	157:21 164:11
view 170:9 212:4	want 16:1 23:9	38:11 39:10,17	264:21 265:2,4	173:19 193:20
270:10	30:1 33:17 85:20	40:7 41:2,10,12	267:16 268:5,16	208:21 230:8
viewed 16:10,15	114:10 117:18,19	41:18,22 42:16	269:7 270:21	231:2,4 262:7
viewing 5:16	117:20 125:12	43:19,20 44:15	271:10,13,14,17	274:16 299:11
violations 302:16	144:6 152:18	45:5,17,19 46:1,5	272:1,3,8,15,17	ways 132:18,20
viscosities 57:3	161:21 195:15	47:16,18,22 48:1	273:3,5,11,15,17	149:18 155:12
viscosity 45:19	202:18 206:8	51:14 55:11,22,22	274:6 276:5,6,9	204:19 280:20
47:15,19 201:6	215:22 251:1	57:1,20,21 58:2	276:11,12,15,18	300:2
242:22 278:18	273:13 276:13	59:5,9 60:4,7,13	276:19 277:2,2,3	weaknesses 56:6
visit 64:1,17 70:5	279:14 286:14	67:5 68:8 70:1	277:4,16 278:2	253:6
134:1 296:2	289:12 297:3,12	73:15 79:8 95:11	280:2,20 281:4,11	weapons 135:4
visited 245:14	297:21,21 307:4	95:18,21 96:1,3,7	282:1,12,13,15,16	294:19
visual 123:9	wanted 101:14	96:17 103:5	282:19 283:5,10	Web 5:10,12 15:20
visually 185:20	109:20 128:16	104:10 106:5,7,9	283:11,17,20	weeks 142:18
vital 28:13 39:14	190:1,6,9,14,16	106:22 108:6	284:6 286:4,8,16	166:11 265:17
300:3	wants 182:4 279:17	124:4 126:1	286:18 287:5,10	week's 28:6
vitrification 41:3	War 294:21,21	162:13 182:9,14	287:21 288:18,20	weigh 298:14
64:14	ware 80:22	182:22 183:1	288:21 289:16	weight 66:20,20

Г

				_
67:1 120:17	264:15,16,19	107:2,11,16 108:3	134:7 136:6	169:19 174:5
199:17 236:13	265:6 271:22	108:9,22 109:5,16	182:18 196:19	writing 192:10
weights 239:18	275:18,20 278:7	109:19 110:3,17	197:6 220:22	211:12 256:2
welcome 5:22 21:1	279:15 285:3,18	111:18 112:6	221:11,13 225:7	287:13 306:19
26:15 34:8,18	290:6 295:3	113:3,9 114:1	226:18 231:11	written 5:15 9:15
60:15	307:16	115:17 116:13,19	245:5 255:12	15:18 16:11 60:16
welcomes 291:9	we've 56:3 73:19	117:5,18 118:18	267:6,7 277:15	99:17 176:3
well-established	79:21 80:1 99:11	119:16,22 123:1	286:9 301:19	210:18 211:6
122:13	99:22 101:15	123:14 124:15	304:14	247:21 256:18
well-known 45:18	108:19 132:15	125:8,20 126:7	workable 155:7	266:1 287:9
well-mixed 133:1	134:3 140:20	127:12 128:14	156:3	307:12
went 64:17 85:9	149:17,17 163:11	130:19 131:3,6,21	worked 22:2 36:14	wrong 69:9 87:12
88:16,17 121:17	163:14 165:10	133:16 135:2	72:14 73:1,3	116:14 173:15
129:1,8 133:22	174:9,10 179:21	139:5,16 140:5,22	74:15 115:5	wrote 62:2,6
137:5 267:15	181:9 193:1	141:9,13 144:3	300:13	155:16 202:7
279:10 307:19	223:14 226:18	154:15 177:20	worker 91:18	WRPS 2:16 189:3
we'll 90:4,9 92:2	230:3 235:19	190:18 208:15	138:4	WSU 113:1 118:6,9
197:16 207:5	236:19,21,22	216:11 217:1,9,13	workers 10:9 11:4	WTP 32:22 36:2,10
213:12 214:22	237:2,3 240:15	218:4,12 219:10	14:22 33:18 291:6	36:12,17 37:5,9
233:4 236:14	254:6 259:3	219:20 220:3,8	296:12 299:14	39:2,14,15,20
238:2,6,18 241:17	260:13,15 261:19	227:17 228:21	300:11 302:1,5,13	40:12,16 41:18
246:12,21 248:1	262:11,13 266:3,3	232:7 238:20	working 26:2 29:14	43:22 45:13 46:3
256:20 267:1	266:20 268:19	249:11 260:12	34:1,21 139:22	48:9,13 52:8
269:21 270:14	270:19 271:8,9	261:14 265:7	142:15 205:16	54:19 56:4 58:7
278:8 290:2	272:8,16 273:1	266:6,10 267:9	206:11 227:13	70:5,16 74:7 76:8
306:21 307:17	287:14 289:8,9	284:13 289:20	253:3 266:4 285:2	77:21 101:17,19
we're 26:2 80:16,22	295:14	293:16 298:6	289:9 295:16	199:16 205:11
82:5 87:2 96:19	whirlwind 99:4	303:8,11 306:21	297:11	213:21 227:13
104:22 105:8	wide 46:11 186:12	wish 6:9,16 60:21	works 69:3 94:3	233:1,15 236:3,14
113:15 117:8,9,11	widely 115:11	wishes 45:21	296:9,10 299:13	236:21 237:6,10
124:6,7 127:4,5	Williams 307:6	307:12	299:13	238:12,15 239:22
128:14 140:12,14	willing 191:1,8	wishing 7:1	Workshop 264:21	241:2,20 244:7
140:16 154:17	window 224:5	wit 205:16	World 294:21	245:16 258:12
161:5,12 164:22	231:15	withdraw 83:14	worried 232:13	261:13 262:14
165:15 167:16	Winokur 1:12,14	withdrew 84:2	worst 268:16	263:22 264:5
174:22 188:20	3:3 4:3,4 21:3	witness 296:3	worst-case 57:20	265:17 266:3
191:6 193:20	27:21 34:16 38:13	witnesses 58:18	worthwhile 128:9	272:5,8 273:22
205:16 206:2	58:11 60:19 62:15	178:2	185:15	278:7,11 279:2
207:11,14 211:11	63:5,10,15 64:11	wonder 304:22	wouldn't 90:8	285:2,21 286:1,6
213:5,9,21 216:11	64:22 65:4 66:12	wonderful 228:2	189:3	286:13,21 287:10
217:15 221:10	66:17 67:2 68:1	word 202:2	WPT 55:7	287:18 288:2
227:3 228:3,6,18	68:16 69:15,18	words 149:5,9	wrap 14:8 306:2	295:11 297:7
231:11 234:13	70:7 96:18 99:3	161:20 170:20	wrapping 15:6	301:8
235:2,13 237:4	99:22 100:12,16	work 27:4 29:16	Wright 70:4	WTP's 48:6 274:2
238:5 247:10	101014001005	40:16 68:9 72:11	write 53:10 69:12	WTP/PJMs 53:6
	101:8,14,22 102:5			VVII /I 01VIS 55:0
251:5 255:17	103:1,21 104:16	72:12 73:5 81:14	107:16 108:10	
				X

X 102:2,6	\$6 306:3	1965 252:11	2015 168:5 169:18	277:4
	\$60 281:2	1987 299:17	273:13,16 295:6	
Y		1990's 12:19	295:11	5
Y 102:2 105:8	0	1999 73:16	2019 26:6 295:12	5 66:16 128:1 152:7
year 11:19 13:14	0.18 53:4,15 112:8		2045 280:10 281:17	152:8,11 153:16
43:6 62:2 84:21	0.33 131:4	2	2047 280:5,8,19	155:20 157:15
104:9 155:19	09 72:14 144:11	2 86:15 103:4 116:1	209 3:14	159:6
160:19,20 165:21	1	135:18 252:6,10	21 3:5	5:00 307:17
166:6 202:6		252:16	22 49:14 106:4	50 124:7 179:1
235:19 259:19,22	1 105:10 135:18	2A 264:12	124:2 135:17	282:14 301:22
260:1,3,7,8,13	205:4	2nd 302:21	179:3	303:3
266:13,15 267:8	1st 28:7	2:03 307:18	222-S 287:20 288:3	500 275:2
272:12,12 281:2,3	10 73:16 137:9	20 8:4 11:18 64:1	289:6	53 18:2 22:22 28:14
years 8:4 10:19,19	151:17,18 152:12	79:14 102:21	227 3:13	35:4 291:15
19:10 39:9 56:9	258:14	105:14,20 151:19	2286 8:6	586 295:6,9
64:1 73:16 74:16	100 10:19 248:5	158:3 160:10,10	24 200:9	
91:12 170:5	117 301:21	212:19 302:7	26 5:3	6
193:11 209:18	118 259:12 260:6	200 15:18 88:16	28 46:17 47:16	6 135:8
210:16 212:16,19	12 104:1 124:7,8,9	200:13 236:1	244:13	60 5:14
212:20 224:4	179:6 212:20	273:3,11	293 3:17	61 3:8
227:6 233:19	250:8	2000 48:5	298 3:19	67 10:18 294:18
240:22 280:12	120 29:6	2001 48:10 252:11		7
291:11 294:18	13 54:6 142:21	2002 13:1 46:4	3	
295:5,18 305:9	143:2	47:17 48:18	3 49:10 103:6,18	7 1:8
306:3	15 151:17 152:12	240:13 300:13	104:3 148:4	7th 7:14
Yesterday 303:14	302:11	2005 33:1 301:20	149:11 151:11	70 13:18 101:1
yield 27:17 116:2	15th 5:4	2005-2006 71:21	235:22	236:11 237:5
200:13 201:9	15-inch 101:1	2006 48:20 70:18	3-M-3 62:19	239:12 248:16
243:2	16 236:13	2007 78:21 267:18	30 13:21 103:16	700 88:18
	17 135:18	2008 79:3 100:8	30th 29:10	7016 1:11
Z	17th 133:20	240:16 302:15	300 275:12 276:11	75 295:7,9
zero 86:10 217:19	17-1 213:3	2009 13:17 47:15	307 3:22	8
zone 54:13,19 55:3	176 18:3	49:11,16 50:4,12	33 113:6,11,14,20	80 13:19 151:12
76:2,8 81:3	177 35:6 46:5,17	51:6 80:13 106:2	139:13	85 295:20
110:12,20 116:22	18 53:10 81:4 85:22	132:10 144:12	34-inch 101:1	03 293.20
117:3,10 118:20	99:10 113:5,18	256:15	36 104:3	9
119:3,8,12 120:2	114:5 115:18	2010 1:8 5:3,4 7:14	375 294:7	9:00 4:2
120:22 121:4,9	116:1,21 117:10	16:14 29:10 51:5	376 275:22	90s 251:13
145:12 147:2	117:11,21,22	54:3 71:10 252:20		95-3 251:15
150:11	118:2 119:1 124:8	266:15 302:22	4	<i>JU U 25</i> 1.15
zones 110:11	179:7 195:11	2011 272:13,22	4 3:2 265:20 280:1	
112:15,20 118:15	219:21 250:8	2012 134:16 142:4	40 3:4 13:14 91:12	
145:14 147:4	182 101:17 144:8	143:8,21 165:12	146:10 218:14	
¢	19 37:2 285:1	210:12,19,22	258:12	
\$	1940's 11:16	2013 134:17 165:14	40-year 40:21	
\$12.263 89:12	1950's 12:8	2014 168:4 169:10	42 8:6	
\$300 281:8	1954 7:20	169:17	420 162:9	
\$50 281:2	1963 294:3		49 275:8 276:12	
	1	l	I	1